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 About Me...

● Not a “computer person” by day...

● Arch Linux developer for 5 years

● Responsible for the GNU Toolchain and 
related packages

● One of the primary Pacman package 
manager developers



 Arch Linux – Overview

● From the website:

“Arch Linux is a versatile, and simple
  distribution designed to fit the needs
  of the competent Linux user.”

“A lightweight and flexible Linux  
  distribution that tries to Keep It
  Simple.”



 Linux Distributions

● Distrowatch tracks 319 active
Linux distributions (with 340
more on the waiting list)

● Many are variants of another
distribution

● GNU/Linux Distribution Timeline
(http://futurist.se/gldt/)

● 480 distributions
● Major clusters starting at
● Debian, Slackware, Red Hat

http://futurist.se/gldt/


 Linux Distributions – Arch Based



 What Separates Linux Distros?

● Target audience

● CPU architecture

● Software selection

● Software management



 What Separates Linux Distros?

● Target audience
● Beginner or experienced users?
● Desktop or server usage?
● Live distro?
● Specialist purpose (rescue, audio, ...)

● CPU architecture
● i686, x86-64, ARM, PPC, SPARC, ...



 What Separates Linux Distros?

● Software selection
● Desktop environment

(GNOME, KDE, XFCE, LXDM, …)

● Specialist software
(audio, scientific, gaming, …)

● Proprietary software availability

● Default filesystem

● ...



 What Separates Linux Distros?

● Software management

● From a distributions point of view:
● How often are packages updated?
● When are new releases made?
● How long are releases supported for?

● From a users point of view:
● How do I find and install software?
● How do I keep my system up-to-date?



 The Standard Release Model

● Most Linux distributions make a release 
then only provide security updates for 
software until their next major release

● Requires a major update, typically every six 
months

● Can be easier to re-install...

● Requires waiting for the latest software
(or installing from unsupported sources)



 The Rolling Release Model

(There are six kinds of rolling release 
according to Wikipedia...)

● Software is continuously updated as newer 
versions are released

● No major distribution releases are made, as 
users continuously are upgrading to the 
“new version”

● Can be less stable...



 Rolling Release and Arch Linux

● Arch Linux is on the extreme of rolling 
release systems

● Packages are typically updated within a few 
days of release (sometimes within minutes!)

● Only keep latest version of software in our 
repositories



 Software Management

● How a user deals with software installation 
and updates is one of the most important 
aspects of a Linux distribution

● There are two main package management 
systems in Linux:

● RPM – use by Red Hat, openSUSE, …
● (rpm → yum → ...)

● deb – used by Debian and its derivatives
(dpkg → apt → synaptics) 

● many others...



 Arch Linux Package Manager

● Uses the “pacman” package manager

● Combines a simple binary package format 
with easy to use build system

● Fast! - according to Linux Format it beats 
the competition by a wide margin

● Does everything you expect from a package 
manager (update system, resolve 
dependencies, ...) 



 Package Creation

● Very simple scripts required to create a 
package

● If you can build the software manually, then 
you can create a package for it

● Tool provided to build packages called 
“makepkg”

● Build script is placed in a file called a 
PKGBUILD



 Package Creation

● Start with how you would normally install a 
program:

$ tar -xf <pkgname>-<pkgver>
$ cd <pkgname>-<pkgver>
$ ./configure
$ make
$ sudo make install



 Package Creation

● Separate out the parts run as a user and 
root into separate functions:

$ tar -xf <pkgname>-<pkgver>
$ cd <pkgname>-<pkgver>

build() {
  ./configure
  make
}

package() {
  make install
}



 Package Creation

● makepkg will automatically handle source 
extraction into “$srcdir”

build() {
  cd $srcdir/<pkgname>-<pkgver>
  ./configure
  make
}

package() {
  cd $srcdir/<pkgname>-<pkgver>
  make install
}



 Package Creation

● Files need to be installed in “$pkgdir”, 
which is compressed to make the package:

build() {
  cd $srcdir-<pkgname>-<pkgver>
  ./configure –prefix=/usr
  make
}

package() {
  cd $srcdir-<pkgname>-<pkgver>
  make DESTDIR=$pkgdir install
}



 Package Creation

● Add some information about the package at 
the top of the file:

pkgname=foo
pkgver=3.0
pkgrel=1
pkgdesc="Example software"
arch=('i686' 'x86_64')
url="http://foo.example.com"
license=('GPL')
depends=('glibc')
source=(http://$pkgname-$pkgver.tar.gz)
md5sums=('d41d8cd98f00b204e9800f8427e')



 Package Creation

● makepkg automates many common 
packaging tasks:

● Stripping debugging symbols from 
binaries

● Compressing man and info pages
● Setting compiler/linker options

(CFLAGS, LDFLAGS, MAKEFLAGS) 
● Removing common unwanted files

(libtool, infodir, …)



 Package Creation

● A single file is placed in the $pkgdir 
directory with all the needed package 
annotation

● Then a (compressed) tar archive of the 
$pkgdir directory is created

● DONE!



 Package Creation

● PKGBUILDs are written in Bash
● Easy to create
● Easy to interpret

● Makes contributing PKGBUILDs for your 
favourite software simple!

● Working on simplifying PKGBUILDs further 
without losing simplicity

● VCS source URLs
● Common packaging functions?



 Arch Linux Development

● “Community based” distribution
(No-one gets paid)

● Relatively small team
● 33 Developers  (many inactive...)
● 37 Trusted Users
● + Forum Moderators, IRC Ops, Wiki

           Maintainers, Bug Wranglers, …

● Lots of involvement from users



 Developers

● Maintain the core of the distribution

● Make global decisions on that effect the 
entire distribution

● Maintain packages in the two primary 
repositories – [core] and [extra]



 Developers

● [core]  - ~200 packages
● Everything critical to boot-up and 
software packaging

● All packages go through a testing and 
sign-off procedure

● [extra] - ~2,800 packages
● Widely used (>5%) software
● Desktop environments, multimedia, 
programming language interpreters, 
office, ...



 Trusted Users

● “Independently” governed group

● Provide popular software(>1% usage) in the 
[community] repository to supplement the 
[extra] repository 

● ~2,900 packages



 Becoming a Developer

● Actively contribute to the community
● Provide PKGBUILDs for unpackaged 
sofware

● Fixing bugs
● Contributing code to our projects
● ...

● Apply to become a Trusted User
● Sponsoring and voting process...

● Be invited onto the Developer team



 How Is Development Co-ordinated?

● Mostly...  it is not...

● Developers typically maintain a set of 
packages

● Within that set of packages they have 
complete control

● Give other developers a “heads-up” if 
changes are going to have wider 
consequences to the distribution



 My Packages

Toolchain
Core Utilities

Autotools

gcc
glibc

binutils

autoconf
automake

m4
libtool

pkg-config

bash
coreutils

grep
make
sed

patch
gawk
tar

texinfo
...



 Co-ordination Between Developers

● We have a TODO list system for when a 
package update is going to require other 
developers adjusting their package(s)



 Decision Making Process

● A discussion is started on the mailing lists 
for major changes that have effects beyond 
the developers set of packages

● Focus on technical reasons of why the 
proposed change is better

● No formal voting – decisions are made by 
lack of objection to a proposal



 Example - systemd

● systemd is a Linux init system

● First process to get started during boot-up

● Starts all other processes

● Benefits:
● Parallel start-up
● Service start-up determined by simple 
configuration file

● Service dependency management
● Common configuration mechanism



 Example - systemd

● First packages for system were placed in 
AUR in 2010

● Lots of work was required to make it work 
with Arch

“I'm highly dubious that Arch's kernel
  will ever natively support systemd, but
  I'm willing to give that a try as well
  once 2.6.36 hits.”



 Example - systemd

● Over the next two years...

● Moving to a standardised way of configuring 
aspects a system was seen as an advantage

● Changes were made to the Arch Linux init 
system to use these configuration files

● Started using systemd tools to do the 
configuration



 Example - systemd

● Eventually...
● systemd was considered stable

● Bugs in the old Arch init system were 
being fixed using more and more 
systemd tools

● systemd service files began to be 
supplied by upstream projects

● Decision was made to switch init 
systems



 Example - systemd

● This decision caused A LOT of controversy...

● The old system was seen as more simple:
● Shell script – easier to debug?
● Single configuration file

● However, “keeping it simple” as used by 
Arch has a different meaning:

● Minimise Arch specific changes to 
packages



 How Does It All Fit Together?

● Software developers write code that is 
supposed to work...

● By minimising Arch Linux specific changes 
to software, we ensure software fits 
together as its developer intended



 Vanilla Packages

● Means packaging the software as the 
upstream developer intended

● Minimise patching – preferably only to fix 
build issues

● Result in any bug we find is (probably) not 
distribution specific

● Allows us to work more closely with 
software developers to fix bugs 



 Working With Software Developers

● All bug fix patches in Arch must be approved 
by the software developer

● That means that the Arch developers and 
community have become regular code 
contributors

● Many Arch developers also have commit 
access to upstream projects 



 Working With Software Developers

● Increasingly common choice for software 
developers...



 Community Involvement

● Users are strongly encouraged to contribute 
toward Arch Linux in may ways:

● Help on the forums / IRC / mailing lists

● Contribute PKGBUILDs

● Documentation on the wiki

● Provide specialist package repositories

● ...



 AUR – Arch User Repository

● Collection of user submitted PKGBUILDs that 
supplement software available from the 
official repositories

● >40,000 packages
● 170 new packages in last 7 days
● 820 updated in last 7 days
● ~16,000 updated in the last year...

● Some software represented multiple times
● Developmental versions
● Specific configure options



 AUR – Arch User Repository

● Anyone can submit packages

● Entirely community supported and reviewed

● Completely unsupported officially
(use at your own risk...)

● Surprisingly high quality

● Many tools that allow installing from the 
AUR as simply as installing from official 
repositories 



 Arch Linux Wiki

● Rapidly becoming one of the premier 
sources of Linux information

● Vanilla packages mean the information 
provided probably works on other 
distributions



 Arch Linux ARM

● Non-official spin-off for the ARM 
architecture

● One of the distros recommended for the 
Raspberry Pi



 Future Directions for Arch Linux

● Majority response...

“Keep updating packages”

● Add more focus on a particular areas

● Add more architectures

● Simplify the system further



 Keeping Packages Updated

● One of Arch Linux's greatest contributions 
to the Linux community

● Arch gets packages in their stable 
repositories before some major distributions 
get it in their developmental versions

● The Arch community will identify bugs early 
and report the issue to the software 
developers

● Fixes benefit all Linux distributions



 Add More Architectures

● Currently we support x86 in 32bit (i686) and 
64bit (x86-64) varieties

● There are community projects supporting 
other architectures

● ARM (v5, v6, v7)
● PPC
● ...

● Would be good to provide a way for these 
ports to become official  (like x86-64 did)



 Simplifying the Filesystem

● Usual filesystem layout has a lot of 
redundancies

/boot
/bin
/etc
/home
/lib
/sbin
/usr
    /bin
    /lib
    /sbin



 Simplifying the Filesystem

● Libraries

/boot
/bin
/etc
/home
/lib (essential libraries)
/sbin
/usr
    /bin
    /lib (rest of libraries)
    /sbin



 Simplifying the Filesystem

● Keep all libraries in one place

/boot
/bin
/etc
/home
/lib  -> /usr/lib
/sbin
/usr
    /bin
    /lib
    /sbin



 Simplifying the Filesystem

● Executables – distinction between 
directories is vague...

/boot
/bin        (essential user commands)
/etc
/home
/lib  -> /usr/lib
/sbin       (system commands)
/usr
    /bin    (most commands)
    /lib
    /sbin   (non-essential system)



 Simplifying the Filesystem

● Keep all libraries in one place

/boot
/bin  -> /usr/bin
/etc
/home
/lib  -> /usr/lib
/sbin -> /usr/bin
/usr
    /bin
    /lib
    /sbin -> bin



 Simplifying the Filesystem

● /etc directory holds all configuration files

● Beginning to have these placed in 
/usr/lib/<pkgname> with files in /etc 
overriding the default settings

● Would be very helpful for a rolling release 
system

● Requires substantial work with upstream 
projects to achieve...



 Simplifying the Packaging System 

● Many packaging task are overly repetitive...

● Examples
● Many packages use simple “cmmi”
● all Perl module packages look the same

● Any time a font is installed, the font cache 
needs updated

● Updated info packages need added to the 
info index

● Want to remove the repitition without 
adding complexity to packaging system



 Automating More Packaging

● Task like rebuilds for library soname 
changes are typically trivial

● Would save a lot of time if we could 
automate (most of) this

● Most packages do not require architecture 
specific changes – build for one and 
automate the rest

● Would allow us to focus more on improving 
other areas of the distribution



 Thanks

● The SINFO organisers for flying me over to 
talk about Arch Linux

● To every who responded to my request for 
information about what they planned to do 
with Arch Linux (even if I did not use much of it...)

● The Arch Linux community for everything 
that they contribute!



 License

● This material is made available under the 
terms of the “Creative Commons Attribution 
– Share Alike 3.0 License”

● http://creativecommons.org/licenses/by-sa/3.0/ 
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