

Allan McRae
allan@archlinux.org

Succeeding on the
Bleeding Edge

 Overview

● Arch Linux

● Development process

● Involvement of the community

● Future plans

 About Me...

● Not a “computer person” by day...

● Arch Linux developer for 5 years

● Responsible for the GNU Toolchain and
related packages

● One of the primary Pacman package
manager developers

 Arch Linux – Overview

● From the website:

“Arch Linux is a versatile, and simple
 distribution designed to fit the needs
 of the competent Linux user.”

“A lightweight and flexible Linux
 distribution that tries to Keep It
 Simple.”

 Linux Distributions

● Distrowatch tracks 319 active
Linux distributions (with 340
more on the waiting list)

● Many are variants of another
distribution

● GNU/Linux Distribution Timeline
(http://futurist.se/gldt/)

● 480 distributions
● Major clusters starting at
● Debian, Slackware, Red Hat

http://futurist.se/gldt/

 Linux Distributions – Arch Based

 What Separates Linux Distros?

● Target audience

● CPU architecture

● Software selection

● Software management

 What Separates Linux Distros?

● Target audience
● Beginner or experienced users?
● Desktop or server usage?
● Live distro?
● Specialist purpose (rescue, audio, ...)

● CPU architecture
● i686, x86-64, ARM, PPC, SPARC, ...

 What Separates Linux Distros?

● Software selection
● Desktop environment

(GNOME, KDE, XFCE, LXDM, …)

● Specialist software
(audio, scientific, gaming, …)

● Proprietary software availability

● Default filesystem

● ...

 What Separates Linux Distros?

● Software management

● From a distributions point of view:
● How often are packages updated?
● When are new releases made?
● How long are releases supported for?

● From a users point of view:
● How do I find and install software?
● How do I keep my system up-to-date?

 The Standard Release Model

● Most Linux distributions make a release
then only provide security updates for
software until their next major release

● Requires a major update, typically every six
months

● Can be easier to re-install...

● Requires waiting for the latest software
(or installing from unsupported sources)

 The Rolling Release Model

(There are six kinds of rolling release
according to Wikipedia...)

● Software is continuously updated as newer
versions are released

● No major distribution releases are made, as
users continuously are upgrading to the
“new version”

● Can be less stable...

 Rolling Release and Arch Linux

● Arch Linux is on the extreme of rolling
release systems

● Packages are typically updated within a few
days of release (sometimes within minutes!)

● Only keep latest version of software in our
repositories

 Software Management

● How a user deals with software installation
and updates is one of the most important
aspects of a Linux distribution

● There are two main package management
systems in Linux:

● RPM – use by Red Hat, openSUSE, …
● (rpm → yum → ...)

● deb – used by Debian and its derivatives
(dpkg → apt → synaptics)

● many others...

 Arch Linux Package Manager

● Uses the “pacman” package manager

● Combines a simple binary package format
with easy to use build system

● Fast! - according to Linux Format it beats
the competition by a wide margin

● Does everything you expect from a package
manager (update system, resolve
dependencies, ...)

 Package Creation

● Very simple scripts required to create a
package

● If you can build the software manually, then
you can create a package for it

● Tool provided to build packages called
“makepkg”

● Build script is placed in a file called a
PKGBUILD

 Package Creation

● Start with how you would normally install a
program:

$ tar -xf <pkgname>-<pkgver>
$ cd <pkgname>-<pkgver>
$./configure
$ make
$ sudo make install

 Package Creation

● Separate out the parts run as a user and
root into separate functions:

$ tar -xf <pkgname>-<pkgver>
$ cd <pkgname>-<pkgver>

build() {
 ./configure
 make
}

package() {
 make install
}

 Package Creation

● makepkg will automatically handle source
extraction into “$srcdir”

build() {
 cd $srcdir/<pkgname>-<pkgver>
 ./configure
 make
}

package() {
 cd $srcdir/<pkgname>-<pkgver>
 make install
}

 Package Creation

● Files need to be installed in “$pkgdir”,
which is compressed to make the package:

build() {
 cd $srcdir-<pkgname>-<pkgver>
 ./configure –prefix=/usr
 make
}

package() {
 cd $srcdir-<pkgname>-<pkgver>
 make DESTDIR=$pkgdir install
}

 Package Creation

● Add some information about the package at
the top of the file:

pkgname=foo
pkgver=3.0
pkgrel=1
pkgdesc="Example software"
arch=('i686' 'x86_64')
url="http://foo.example.com"
license=('GPL')
depends=('glibc')
source=(http://$pkgname-$pkgver.tar.gz)
md5sums=('d41d8cd98f00b204e9800f8427e')

 Package Creation

● makepkg automates many common
packaging tasks:

● Stripping debugging symbols from
binaries

● Compressing man and info pages
● Setting compiler/linker options

(CFLAGS, LDFLAGS, MAKEFLAGS)
● Removing common unwanted files

(libtool, infodir, …)

 Package Creation

● A single file is placed in the $pkgdir
directory with all the needed package
annotation

● Then a (compressed) tar archive of the
$pkgdir directory is created

● DONE!

 Package Creation

● PKGBUILDs are written in Bash
● Easy to create
● Easy to interpret

● Makes contributing PKGBUILDs for your
favourite software simple!

● Working on simplifying PKGBUILDs further
without losing simplicity

● VCS source URLs
● Common packaging functions?

 Arch Linux Development

● “Community based” distribution
(No-one gets paid)

● Relatively small team
● 33 Developers (many inactive...)
● 37 Trusted Users
● + Forum Moderators, IRC Ops, Wiki

 Maintainers, Bug Wranglers, …

● Lots of involvement from users

 Developers

● Maintain the core of the distribution

● Make global decisions on that effect the
entire distribution

● Maintain packages in the two primary
repositories – [core] and [extra]

 Developers

● [core] - ~200 packages
● Everything critical to boot-up and
software packaging

● All packages go through a testing and
sign-off procedure

● [extra] - ~2,800 packages
● Widely used (>5%) software
● Desktop environments, multimedia,
programming language interpreters,
office, ...

 Trusted Users

● “Independently” governed group

● Provide popular software(>1% usage) in the
[community] repository to supplement the
[extra] repository

● ~2,900 packages

 Becoming a Developer

● Actively contribute to the community
● Provide PKGBUILDs for unpackaged
sofware

● Fixing bugs
● Contributing code to our projects
● ...

● Apply to become a Trusted User
● Sponsoring and voting process...

● Be invited onto the Developer team

 How Is Development Co-ordinated?

● Mostly... it is not...

● Developers typically maintain a set of
packages

● Within that set of packages they have
complete control

● Give other developers a “heads-up” if
changes are going to have wider
consequences to the distribution

 My Packages

Toolchain
Core Utilities

Autotools

gcc
glibc

binutils

autoconf
automake

m4
libtool

pkg-config

bash
coreutils

grep
make
sed

patch
gawk
tar

texinfo
...

 Co-ordination Between Developers

● We have a TODO list system for when a
package update is going to require other
developers adjusting their package(s)

 Decision Making Process

● A discussion is started on the mailing lists
for major changes that have effects beyond
the developers set of packages

● Focus on technical reasons of why the
proposed change is better

● No formal voting – decisions are made by
lack of objection to a proposal

 Example - systemd

● systemd is a Linux init system

● First process to get started during boot-up

● Starts all other processes

● Benefits:
● Parallel start-up
● Service start-up determined by simple
configuration file

● Service dependency management
● Common configuration mechanism

 Example - systemd

● First packages for system were placed in
AUR in 2010

● Lots of work was required to make it work
with Arch

“I'm highly dubious that Arch's kernel
 will ever natively support systemd, but
 I'm willing to give that a try as well
 once 2.6.36 hits.”

 Example - systemd

● Over the next two years...

● Moving to a standardised way of configuring
aspects a system was seen as an advantage

● Changes were made to the Arch Linux init
system to use these configuration files

● Started using systemd tools to do the
configuration

 Example - systemd

● Eventually...
● systemd was considered stable

● Bugs in the old Arch init system were
being fixed using more and more
systemd tools

● systemd service files began to be
supplied by upstream projects

● Decision was made to switch init
systems

 Example - systemd

● This decision caused A LOT of controversy...

● The old system was seen as more simple:
● Shell script – easier to debug?
● Single configuration file

● However, “keeping it simple” as used by
Arch has a different meaning:

● Minimise Arch specific changes to
packages

 How Does It All Fit Together?

● Software developers write code that is
supposed to work...

● By minimising Arch Linux specific changes
to software, we ensure software fits
together as its developer intended

 Vanilla Packages

● Means packaging the software as the
upstream developer intended

● Minimise patching – preferably only to fix
build issues

● Result in any bug we find is (probably) not
distribution specific

● Allows us to work more closely with
software developers to fix bugs

 Working With Software Developers

● All bug fix patches in Arch must be approved
by the software developer

● That means that the Arch developers and
community have become regular code
contributors

● Many Arch developers also have commit
access to upstream projects

 Working With Software Developers

● Increasingly common choice for software
developers...

 Community Involvement

● Users are strongly encouraged to contribute
toward Arch Linux in may ways:

● Help on the forums / IRC / mailing lists

● Contribute PKGBUILDs

● Documentation on the wiki

● Provide specialist package repositories

● ...

 AUR – Arch User Repository

● Collection of user submitted PKGBUILDs that
supplement software available from the
official repositories

● >40,000 packages
● 170 new packages in last 7 days
● 820 updated in last 7 days
● ~16,000 updated in the last year...

● Some software represented multiple times
● Developmental versions
● Specific configure options

 AUR – Arch User Repository

● Anyone can submit packages

● Entirely community supported and reviewed

● Completely unsupported officially
(use at your own risk...)

● Surprisingly high quality

● Many tools that allow installing from the
AUR as simply as installing from official
repositories

 Arch Linux Wiki

● Rapidly becoming one of the premier
sources of Linux information

● Vanilla packages mean the information
provided probably works on other
distributions

 Arch Linux ARM

● Non-official spin-off for the ARM
architecture

● One of the distros recommended for the
Raspberry Pi

 Future Directions for Arch Linux

● Majority response...

“Keep updating packages”

● Add more focus on a particular areas

● Add more architectures

● Simplify the system further

 Keeping Packages Updated

● One of Arch Linux's greatest contributions
to the Linux community

● Arch gets packages in their stable
repositories before some major distributions
get it in their developmental versions

● The Arch community will identify bugs early
and report the issue to the software
developers

● Fixes benefit all Linux distributions

 Add More Architectures

● Currently we support x86 in 32bit (i686) and
64bit (x86-64) varieties

● There are community projects supporting
other architectures

● ARM (v5, v6, v7)
● PPC
● ...

● Would be good to provide a way for these
ports to become official (like x86-64 did)

 Simplifying the Filesystem

● Usual filesystem layout has a lot of
redundancies

/boot
/bin
/etc
/home
/lib
/sbin
/usr
 /bin
 /lib
 /sbin

 Simplifying the Filesystem

● Libraries

/boot
/bin
/etc
/home
/lib (essential libraries)
/sbin
/usr
 /bin
 /lib (rest of libraries)
 /sbin

 Simplifying the Filesystem

● Keep all libraries in one place

/boot
/bin
/etc
/home
/lib -> /usr/lib
/sbin
/usr
 /bin
 /lib
 /sbin

 Simplifying the Filesystem

● Executables – distinction between
directories is vague...

/boot
/bin (essential user commands)
/etc
/home
/lib -> /usr/lib
/sbin (system commands)
/usr
 /bin (most commands)
 /lib
 /sbin (non-essential system)

 Simplifying the Filesystem

● Keep all libraries in one place

/boot
/bin -> /usr/bin
/etc
/home
/lib -> /usr/lib
/sbin -> /usr/bin
/usr
 /bin
 /lib
 /sbin -> bin

 Simplifying the Filesystem

● /etc directory holds all configuration files

● Beginning to have these placed in
/usr/lib/<pkgname> with files in /etc
overriding the default settings

● Would be very helpful for a rolling release
system

● Requires substantial work with upstream
projects to achieve...

 Simplifying the Packaging System

● Many packaging task are overly repetitive...

● Examples
● Many packages use simple “cmmi”
● all Perl module packages look the same

● Any time a font is installed, the font cache
needs updated

● Updated info packages need added to the
info index

● Want to remove the repitition without
adding complexity to packaging system

 Automating More Packaging

● Task like rebuilds for library soname
changes are typically trivial

● Would save a lot of time if we could
automate (most of) this

● Most packages do not require architecture
specific changes – build for one and
automate the rest

● Would allow us to focus more on improving
other areas of the distribution

 Thanks

● The SINFO organisers for flying me over to
talk about Arch Linux

● To every who responded to my request for
information about what they planned to do
with Arch Linux (even if I did not use much of it...)

● The Arch Linux community for everything
that they contribute!

 License

● This material is made available under the
terms of the “Creative Commons Attribution
– Share Alike 3.0 License”

● http://creativecommons.org/licenses/by-sa/3.0/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

