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ABSTRACT

Standard quantitative trait loci (QTL) mapping techniques commonly assume that the trait is both fully
observed and normally distributed. When considering survival or age-at-onset traits these assumptions are
often incorrect. Methods have been developed to map QTL for survival traits; however, they are both
computationally intensive and not available in standard genome analysis software packages. We propose a
grouped linear regression method for the analysis of continuous survival data. Using simulation we
compare this method to both the Cox and Weibull proportional hazards models and a standard linear
regression method that ignores censoring. The grouped linear regression method is of equivalent power
to both the Cox and Weibull proportional hazards methods and is significantly better than the standard
linear regression method when censored observations are present. The method is also robust to the
proportion of censored individuals and the underlying distribution of the trait. On the basis of linear
regression methodology, the grouped linear regression model is computationally simple and fast and can
be implemented readily in freely available statistical software.

DOMESTIC animals and experimental species pro-
vide a unique resource for the understanding of

quantitative genetic variation. Quantitative trait analysis
of experimental crosses has provided many important
insights into the genetics of complex traits (Morgante

and Salamini 2003; reviewed in Andersson and
Georges 2004). Several genes underlying quantitative
genetic variation have been identified in the fields of
animal and crop science, many of which have signifi-
cant commercial potential (e.g., Jeon et al. 1999; Nezer

et al. 1999; Frary et al. 2000; Fridman et al. 2000;
Grisart et al. 2002).

Most current quantitative trait loci (QTL) mapping
techniques utilize an interval-mapping approach first
put forward by Lander and Botstein (1989). The ap-
proach places a hypothetical trait locus at fixed in-
cremental positions (for example, every 1–2 cM) along a
map of known marker positions and tests for its effect
on the trait using information from flanking markers.
For a given location the basic linear model is

yij ¼ mj 1 eij ;

where yij is the trait value for individual i with genotype j,
mj is the mean effect of genotype j, and eij is random
error (eij � N(0, se

2)). The genotype of an individual at

the position being tested is rarely known so the prob-
ability of an individual being each of the possible
genotypes is calculated from the available marker in-
formation. Lander and Botstein (1989) implement
their method using a maximum-likelihood approach.
The maximum-likelihood method takes into account
heterogeneous variances within marker classes to esti-
mate genotype probabilities. The model parameters are
estimated under both the null (no QTL) and alternative
(with QTL) hypotheses. An advantage of maximum
likelihood is that it uses all of the available observations
on marker genotypes and trait values. The disadvantage
of maximum likelihood is that it is computationally
intensive and usually requires specialized software.

An alternative method, least-squares regression, uses
expected genotype probabilities calculated from flank-
ing markers rather than the more complex approxima-
tion via maximum likelihood (Haley and Knott 1992).
For this approach least-squares linear regression is used
to estimate the effect of genotype on the trait of interest
at each test position along the genome. The asymptotic
equivalence of least-squares regression with maximum-
likelihood interval mapping has been shown through
simulation (Haley and Knott 1992) and by theoretical
calculations of power (Rebai et al. 1995). The least-
squares approach has been shown to be robust to devia-
tions from normality in all but the most extreme situations
(Visscher et al. 1996; Rebai 1997). Kao (2000) and
Knott (2005) review the differences between maximum-
likelihood and regression QTL-mapping methods.
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Time-to-event traits are often nonnormally distrib-
uted and show a right-skewed distribution of trait values
across all individuals. Additionally, time-dependent
traits often include censored observations, which occur
when the true time of the event is unknown. End-of-
study censoring arises when the event of interest has not
occurred by the end of the study period. Within-study
censoring arises if an individual is lost to follow-up
during the course of the study. The loss of information
due to censoring results in lower statistical power, where
the greater the proportion of censoring the lower the
statistical power. Some of this power can be recovered by
modeling censored individuals in the statistical analysis;
however, standard QTL-mapping techniques typically
do not account for this.

The field of survival analysis utilizes special methods
to make better use of the information provided by
censored observations and to better account for the
nonnormal distribution of the trait values. Traditionally,
proportional hazard regression models are used to
model survival traits. These methods assume that if there
are two individuals, a and b, with p time-independent
covariate values in vectors Za and Zb, respectively, the
ratio of their hazards is given by

hðt jZaÞ
hðt jZbÞ

¼ h0ðtÞexp½
Pp

k¼1 bkZak �
h0ðtÞexp½

Pp
k¼1 bkZbk �

¼ exp
Xp
k¼1

bkðZak � ZbkÞ
" #

;

where h(t j Zi) is the hazard for individual i at time point
t, h0(t) is the baseline hazard function, and bi is the
coefficient for the effect of the ith covariate. As time
dependence is included only in the baseline hazard, the
ratio of the hazards of two individuals at any time point
is a constant and therefore the hazards are proportional
(Klein and Moeschberger 1997). Cox (1972) pro-
posed a semiparametric proportional hazards model
that can be used to model survival data without pre-
specifying the distribution of the baseline hazard. This
method is widely used and has been shown to be both
robust and powerful. Parametric proportional hazard
models also exist, which assume that the survival times
follow a given distribution (for example, Weibull).
Under the correct baseline hazard distribution, para-
metric models are more powerful than the equivalent
nonparametric or semiparametric methods. However,
when using real data, the true underlying distribution of
the baseline hazard is unknown. For this reason, Cox
proportional hazards regression remains the method of
choice for most simple survival analyses. Moreno et al.
(2005) compared the Weibull and Cox proportional
hazards models to a more conventional QTL-mapping
method that ignored the nature of the survival data and
found that when analyzing survival trait data the pro-
portional hazards models have greater power.

A drawback of both proportional hazards methods is
that they are computationally intensive for complex
models. Models with many covariates, some of which
may be time dependent, can take extensive periods of
time to analyze. Several computationally intensive ap-
proaches have been proposed (e.g., Symons et al. 2002;
Epstein et al. 2003; Diao et al. 2004; Diao and Lin 2005;
Pankratz et al. 2005). In the presence of censored
observations, the mapping of QTL for survival traits in
line crosses can be carried out using the methods of
Symons et al. (2002), Diao et al. (2004), or Diao and Lin
(2005). When considering QTL mapping for survival
traits in outbred populations the variance component-
based methods of Epstein et al. (2003) or Pankratz
et al. (2005) are appropriate. All of these methods are yet
to be incorporated into general, widely used genome-
analysis packages.

Here we demonstrate a novel grouped linear re-
gression method for the analysis of survival data that is
computationally simple and robust and can be imple-
mented in standard statistical packages. The method is
compared to the classical Cox and Weibull proportional
hazards approaches and to a standard linear regression
method that ignores censoring status. We demonstrate
its relative power and robustness via simulation and
discuss the advantages of this simplified method com-
pared to those currently available.

METHODS

The Cox proportional hazards model has been widely
adopted as the method of choice for survival analyses.
However, when analyzing survival data with many tied or
grouped observations, or when analyzing a large data
set, the Cox model becomes computationally intensive.
Grouped survival information is defined as noncontin-
uous survival time data. Prentice and Gloeckler

(1978) extended the popular Cox model for the analysis
of grouped survival data. The method correctly models
grouped survival data but still remains computationally
intensive for large data sets. We propose a grouped
approximation for continuous survival data where fail-
ure times are partitioned into a number of time periods
and suggest a linear regression model for the analysis of
the grouped data. The aim of this method is to simplify
the analysis of continuous survival data leading to re-
duced computation time and an increased ability to
analyze models with greater complexity. The survival
of each individual through these arbitrary time peri-
ods is coded using a series of conditional survival in-
dicator variables, similar to that used by Madgwick and
Goddard (1989) to predict breeding values in dairy
cattle using lactation period survival data. Rather than
adopt the maximum-likelihood approach of Prentice
and Gloeckler (1978) for parameter coefficient es-
timation we suggest a computationally efficient and
robust linear regression method. The simplicity and
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efficiency of the model should allow the analysis to be
carried out quickly on large data sets using standard
statistical packages.

Grouped linear regression method: Survival times
are sorted in chronological order, regardless of censor-
ing status or genotype, and separated into a predefined
number of groups or time periods. The survival record
for individual i during time period j is given by xij. If
individual i survives interval j, then the corresponding
survival record is xij ¼ 0. If individual i experiences the
event during interval j, then the survival record is xij ¼ 1
and there are no further survival records for the re-
maining intervals. If an individual is censored during a
particular interval then that individual has no survival
record for the current or subsequent intervals (Table 1).
For any given time period, the survival record represents
the conditional probability that an individual survives
the current time period given that the individual sur-
vived to the start of that time period. For any individual
the survival records for each group are therefore in-
dependent observations. The linear model used in the
regression analysis is given by

xij ¼ b0 1
Xp
k¼1

bktik 1bg gi 1 eij ;

where xij is the survival record for individual i during
time period j, the b terms are the estimated regression
coefficients, tik is an indicator variable for time period k
that takes a value of 1 in time period j and 0 otherwise,

gi is the genotype for individual i, and eij is the random
error for individual i during time period j. The terms
b0 1

P
bktik model the baseline hazard and bggi esti-

mates the genotypic effect on the hazard. Only p � 1
coefficients of ti can be estimated, as there are no
noncensored individuals surviving the last time period.
The significance of the effect of genotype is estimated
using standard regression methodology. The resulting
F-statistic (with 1 and n � p � 1 d.f., where n is the
number of individuals) is transformed to an approxi-
mate likelihood-ratio test statistic (LRT) using the for-
mula provided by Baret et al. (1998),

LRT ¼ n3 loge 11
1

n � p � 1

� �
F

� �
;

to allow comparisons with the maximum-likelihood test
statistic of the proportional hazards methods.

Simulation of data: Extensive simulations were car-
ried out using the statistical software package R (R
Development Core Team 2005). We simulated geno-
typic data at a single locus for individuals from a back-
cross between two fully inbred lines. Marker data were
generated at a single QTL locus with possible alleles q
and Q, thus assigning an individual the genotypes qq or
Qq with equal probability. Phenotypic data were simu-
lated assuming a fully penetrant QTL at the marker
locus. Phenotypic data were drawn from a number of
distributions (Table 2).

The baseline hazard function for data drawn from a
Weibull distribution is given by

TABLE 1

Example of the grouped linear regression group coding algorithm for two time periods

Individual Survival Survival record(s)

1 Censored during the first time period NA
2 Event occurs during the first time period 1
3 Survives the first time period and the event occurs during the second 0 1
4 Survives the first time period and then is censored during the second 0

Individual i survives interval j, survival record is xij ¼ 0. Individual i experiences the event during interval j,
survival record is xij ¼ 1 and there are no further survival records for the remaining intervals. An individual is
censored during a particular interval and then that individual has no survival record for the current or sub-
sequent intervals.

TABLE 2

Distributions used to simulate data

Genotype qq Genotype Qq

Model Distribution Shape (r) Scale (lqq) Shape (r) Scale (lQq) Probability density function

1 Weibull 2.00 10.00 2.00 9.05 f ðtÞ ¼ r

l
t
l

� �r�1
e�ðt=lÞr

2 Exponential — 10.00 — 9.16 f ðtÞ ¼ le
� ltð Þ

3 Gamma 3.65 2.19 3.65 2.43
f ðtÞ ¼ 1

lrG rð Þ3 tr�1exp�ðt=lÞ
4 Gamma 0.50 10.00 0.50 7.50
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h0ðtÞ ¼
r

l

t

l

� �r�1
:

Thus, the ratio of the hazards for genotypes qq and Qq is

hðt jQqÞ
hðt j qqÞ ¼ lqq

lQq

� �
r

;

which is independent of time (t) and thus satisfies the
assumptions of a proportional hazards model. When
considering model 1 (Weibull), individuals with geno-
type Qq are at an increased risk of �22% when com-
pared to the risk for genotype qq (for r¼ 2 and lqq¼ 10,
lQq ¼ 9.05). The mean of a Weibull distribution is given
by l3G 11 r�1ð Þ, where GðÞ is the gamma function.
Thus, the simulated effect of the genotype on the haz-
ard is equivalent to a mean difference in survival time of
10 � 9:05ð ÞG 1:5ð Þ ¼ 0:84(0.18 standard deviation units).

The shape and scale parameters of model 2 (exponen-
tial) were calculated to give the same ratio of hazards as
that of the Weibull parameters used in model 1 but from
a more highly skewed distribution. The parameters
of model 3 (gamma) were chosen to approximate the
means and variances of the Weibull distributions used in
model 1. To test the relative robustness of the methods
when phenotypic data are drawn from highly skewed
distributions we simulated data from two gamma dis-
tributions where the gamma shape parameter was 0.5.
Shape parameters were chosen to approximate the
hazard ratio used in model 1. The proportion of cen-
sored individuals, Pc, was varied across simulations. For
the generation of censored observations the method
of Diao et al. (2004) and Diao and Lin (2005) was
implemented. Letting Ti be the survival time of the ith
individual, Ci is the censoring time and I(Ci) is an
indicator variable giving the censoring status (0 ¼
censored, 1 ¼ uncensored) for individual i. Censoring
times (Ci) were drawn from a uniform distribution
between 0 , x# 1 and multiplied by a constant t. Diao

et al. (2004) and Diao and Lin (2005) use a trial-and-
error approach to obtain t. We calculated the value of t
via numerical integration to provide a given proportion
of censored observations (see appendix). If Ci was less
than Ti then the individual was classified as censored
(I(Ci) ¼ 0) and the censoring time was entered into
subsequent analyses. Individuals with greater survival
times are more likely to be censored. The censoring
method creates both ‘‘within-study’’ and ‘‘end-of-study’’
censoring.

Analysis of simulated data: Two methods were used
to group the observations (both censored and uncen-
sored) into time periods to investigate the robustness of
the grouped linear regression method to the grouping
mechanism. The first grouping method (A) groups the
individuals into k groups such that an equal number of
observations (either censored or uncensored) occur in
each time period. The standard error of the group
means is approximately equal when using this method.

The second grouping method (B) groups the individ-
uals into k groups such that an equal proportion of
individuals, denoted by s, survive each time period. Within-
group variances are approximately equal when using
this method. For both methods the last time period
contained all remaining individuals not previously allo-
cated a time period. For example, with 1000 individuals
and five time periods, grouping mechanism A creates
five groups of 200 individuals, while grouping method B
with s ¼ 0.5 creates groups of 500, 250, 125, 63, and 62
individuals. The change in mean test statistic in relation
to the number of time periods and the proportion of
individuals surviving each time period was investigated
for each grouping mechanism.

Power comparisons: We compared the power of the
grouped linear regression method to that of the Cox
and Weibull proportional hazards models and the stan-
dard linear regression least-squares approach (ignoring
censoring status). The inclusion of the standard linear
regression method allows some approximation of the
power to be gained by including the censored obser-
vations correctly in the regression model. Grouping
method B was used to separate the continuous survival
times into groups for the grouped linear regression
method. Values were chosen for the grouping parame-
ters that approximately maximized the power of the
grouped linear regression method. The methods were
contrasted by comparing the mean test statistic pro-
duced for each mode of analysis given phenotypic data
drawn from the same underlying distribution. To ensure
that this was an unbiased comparison of methods, using
each mode of analysis we carried out 1000 simulations of
1000 individuals under the null hypothesis and checked
for deviations from a chi-square distribution with 1 d.f.
This was tested using a one-tailed Kolomonov–Smirnov
test. Where a significant deviation from a chi-square
1-d.f. distribution was seen for a given phenotypic dis-
tribution, we compared the analysis methods via empir-
ical P-values. To calculate the empirical thresholds
10,000 replicates of 1000 individuals were simulated
under the null hypothesis. The proc.time( ) function in
R was used to obtain run times for the model-fitting step
of each mode of analysis.

RESULTS

Grouping method: Tables 3–5 show the effect of
altering the group survival proportion (s) and the
number of groups (k) on the grouped linear regression
mean test statistic. The shape and scale parameters of
model 1 (Weibull) were used in the simulations. Some
combinations of s and k are impossible with a sample
size of 1000 individuals as the number of individuals in a
group falls rapidly at low values of s, thus limiting the
possible number of groups (k). For the range of groups
we simulated, the mean test statistic approximately
increased with the number of time periods into which
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the data were grouped. This result was seen for both
grouping methods. An increase in mean test statistic was
seen when comparing grouping method B to grouping
method A. This relationship held only if the optimal
group survival proportion was determined correctly for
grouping method B. However, this may not always be
possible, in which case adopting a grouping method in
which each group contains an equal number of individ-
uals (A) leads only to a small reduction in mean test
statistic. When the same proportion of individuals
survives each group (grouping method B) the lowest
possible group survival rate, given the number of time
periods and sample size, gave a reasonable approxima-
tion to maximize the mean test statistic. For the power
comparisons grouping method B was adopted, where an
equal proportion of individuals (s ¼ 0.6) survived each
of the groups (k ¼ 10). These parameters will not
maximize the mean test statistic in all situations, but
provide a good approximation to the optimal parame-
ters in the situations tested and good practical guide-
lines for other studies of similar size.

Power comparisons: The distribution of test statistics
for all four modes of analysis was shown to be chi square
under the null hypothesis for model 1 (Figure 1). This
supports the use of the mean test statistic as an unbiased
parameter for the comparison of methods. Figure 2

shows the mean test statistic for all four modes of
analysis with varying percentages of censored survival
times. In the absence of censoring the four analysis
methods have approximately equal power. The standard
linear regression model has a slightly reduced mean test
statistic when compared to the survival analysis meth-
ods. This difference is likely due to the nonnormal
distribution of the survival times. As the percentage of
censored observations is increased, the standard linear
regression mean test statistic falls rapidly. In compari-
son, that of the grouped linear regression and Cox and
Weibull proportional hazard models decreases at a
slower and comparable rate. The relative and actual
run times from the model-fitting step of each analysis
method are shown in Table 6. The procedure time for
fitting 100 models showed the grouped linear regres-
sion method to be almost 5 times quicker than the Cox
proportional hazards method and .12 times quicker
than the Weibull proportional hazards method.

As expected, when simulating data under the null
hypothesis from model 2 (exponential) no significant
deviations were detected from a chi-square distribution
with 1 d.f. When comparing the relative mean test
statistics from model 2 (exponential), similar relation-
ships to those under model 1 (Weibull) were observed
(Figure 3). Given that an exponential distribution is a

TABLE 3

Grouping method A: grouped linear regression mean test statistic

No. of groups (k)
Censoring
proportion (Pc) 2 3 4 5 6 7 8 9 10

0 1.94 7.70 8.24 8.76 9.42 9.28 9.55 9.32 9.87
0.1 1.91 6.72 7.14 8.26 8.44 8.48 8.91 8.98 8.80
0.5 3.13 5.22 5.04 5.67 5.68 5.49 5.83 5.80 5.84

Phenotypes are drawn from model 1 (Weibull) distributions (r ¼ 2, lqq ¼ 10, lQq ¼ 9.05). Numbers in italics
depict the maximum mean test statistic for the given censoring proportion.

TABLE 4

Grouping method B: grouped linear regression mean test statistic with no censoring

No. of groups (k)
Group survival
proportion (s) 2 3 4 5 6 7 8 9 10

0.1 5.38 7.09 — — — — — — —
0.2 4.91 8.50 — — — — — — —
0.3 3.85 9.02 9.39 — — — — — —
0.4 2.85 8.85 9.72 10.18 10.24 — — — —
0.5 1.94 8.13 9.54 10.15 10.66 10.78 — — —
0.6 1.21 7.17 8.68 9.62 9.97 10.25 10.69 10.76 10.74
0.7 0.65 6.18 7.41 8.56 9.03 9.90 9.99 10.36 10.43
0.8 0.35 4.52 5.71 6.94 7.72 8.05 8.77 9.48 9.45
0.9 0.10 2.89 3.56 4.55 5.23 5.76 6.18 6.83 6.93

Phenotypes are drawn from model 1 (Weibull) distributions (r ¼ 2, lqq ¼ 10, lQq ¼ 9.05). Numbers in italics
depict the maximum mean test statistic for the given group survival proportion (s). Some combinations of s and
k are impossible with a sample size of 1000 (—).
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special case of a Weibull distribution, when r ¼ 1, it is
not surprising to find that the parametric Weibull
proportional hazards method is of equal power when
compared to the Cox proportional hazards model.

When phenotypic data were simulated under the null
hypothesis using model 3 (gamma), a significant de-
viation from a chi-square distribution (P ¼ 0.012) was
seen when using the Weibull proportional hazards
model (Figure 4). This result was not unexpected as
the Weibull proportional hazards model fits a Weibull

distribution to the distribution of survival times, which
in this case follow a gamma distribution. To make
unbiased comparisons between the four analysis meth-
ods we calculated empirical P-values for each method of
analysis (Figure 5). When the phenotypes contained no
censored observations the best-performing model was
standard linear regression. This is not surprising as a
gamma distribution with a shape (r) of 3.65 is not highly
skewed. The worst-performing model under no censor-
ing was the Weibull proportional hazards model. Again,

TABLE 5

Grouping method B: grouped linear regression mean test statistic with 50% censoring

No. of groups (k)
Group survival
proportion (s) 2 3 4 5 6 7 8 9 10

0.1 3.46 3.99 — — — — — — —
0.2 3.23 5.04 — — — — — — —
0.3 2.66 5.06 5.29 — — — — — —
0.4 2.16 4.81 5.42 5.34 5.62 — — — —
0.5 1.78 4.72 5.04 5.45 5.69 5.97 — — —
0.6 1.61 3.97 4.65 5.23 5.23 5.69 5.62 5.63 5.81
0.7 1.29 3.26 3.93 4.37 5.13 5.32 5.48 5.83 5.76
0.8 1.10 2.34 3.23 3.68 3.91 4.32 4.65 5.13 5.28
0.9 1.07 1.51 1.93 2.38 2.61 2.79 3.09 3.39 3.80

Phenotypes are drawn from model 1 (Weibull) distributions (r ¼ 2, lqq ¼ 10, lQq ¼ 9.05). Numbers in italics
depict the maximum mean test statistic for the given group survival proportion (s). Some combinations of s and
k are impossible with a sample size of 1000 (—).

Figure 1.—Quantile–quantile plots
for phenotypes simulated from model 1
(Weibull) under the null hypothesis.
Theoretical percentiles were calculated
from a chi-square distribution with 1 d.f.
Sample percentiles were calculated em-
pirically by simulating 1000 replicates of
1000 individuals under the null hypothe-
sis. The dashed line denotes the perfect
relationship between the sample and the-
oretical quintiles. P-values were calculated
from a one-tailed Kolomonov–Smirnov
test.
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this is most likely due to the incorrect parameterization
of the baseline hazard. As the proportion of censoring
is increased the three survival analysis methods out-
perform the standard linear regression method. The
grouped linear regression method shows the same
power as the Cox proportional hazards method.

The gamma distributions used for model 3 were not
highly skewed. However, under the highly skewed gamma
distributions of model 4 we see a similar pattern. When
analyzing data simulated under the null hypothesis the
Weibull proportional hazards model again gives test
statistics that are not distributed as a chi-square distri-
bution with 1 d.f. (P¼ 0.0007). With no censoring in the
sample simulated under the alternative hypothesis the
Weibull proportional hazards method is the least power-
ful mode of analysis (Figure 6). Again, the grouped

linear regression approach is of equal power to the Cox
proportional hazards model, regardless of the censor-
ing proportion. When simulated phenotypes include
censored observations, the least powerful method was
the standard linear regression method.

DISCUSSION

We have demonstrated the relative power of a novel
grouped linear regression method for mapping QTL
using censored survival time data. This method is not
only as powerful as the techniques currently available
but is also robust. To further check the robustness of the
method we simulated two alternative censoring mech-
anisms. Both methods simulated only within-study
censoring. No differences in the relative powers of the
methods were observed (results not shown).

The grouped linear regression method is not only as
robust and powerful as the Cox proportional hazards
method but also computationally much faster. For
genomewide scans of several thousand test positions
and many potential models, the savings in computation
time would be considerable. The reduction in compu-
tation time would be further appreciated when carrying
out permutation testing or bootstrapping. For example,
consider a genome of 3000 cM with linkage analysis
carried out at intervals of 1 cM. If one was to carry out
1000 permutation tests on the sample then the grouped
linear regression method, assuming that the relative
times are the same as those shown in our simulations,
would be 10.5 hr faster than the Cox model and 32 hr
faster than the Weibull proportional hazards method.

Figure 2.—Mean test statistics for phenotypes simulated
from model 1 (Weibull) distributions with varying propor-
tions of censoring. h, grouped linear regression; 3, Cox
proportional hazards regression; 1, Weibull proportional
hazards regression; ), standard linear regression.

TABLE 6

Time taken to fit 100 models using R (v. 2.1.1)

Relative
procedure

time

Actual
procedure
time (sec)

Standard linear regression 1 0.22
Cox proportional hazards

regression
7.2 1.59

Weibull proportional hazards
regression

19 4.18

Grouped linear regressiona 1.5 0.33

Procedure times were calculated using the proc.time() func-
tion in R.

a Number of groups (k) ¼10, group survival proportion (s) ¼
0.6.

Figure 3.—Mean test statistics for phenotypes simulated
from model 2 (exponential) distributions with varying pro-
portions of censoring. h, grouped linear regression; 3,
Cox proportional hazards regression; 1, Weibull propor-
tional hazards regression; ), standard linear regression.
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The exact savings in computation time will vary as the
computation times given here for each model are esti-
mates and will vary between software packages. We ex-
pect the number of individuals in a study, the number

of groups into which the continuous survival times are
split, and the proportion of tied observations in the
sample to have an effect on the relative run times of the
various methods. In this study we have directly com-
pared methods that all utilize the expected genotype
probabilities at a given point when testing for a QTL at
that location. Therefore, in terms of computation time,
all these models have an advantage over those models
that fit a more complete, and computationally complex,
maximum-likelihood mixture model approach, such as
the methods of Symons et al. (2002), Diao et al. (2004),
or Diao and Lin (2005).

Recently, Moreno et al. (2005) compared the power
of the Weibull and Cox proportional hazards methods
to standard Gaussian methods for mapping QTL in
survival traits. Empirical survival times for an F2 pop-
ulation were sampled from a real data set collected on
salmonella resistance in mice. Data were transformed
differently for each analysis method. Differing pro-
portions of additive/dominance effects and censoring
proportions were simulated. When censored observa-
tions were included in the sample, Moreno et al. (2005)
report a significant difference in power between the
proportional hazard models and standard linear re-
gression methods for all simulation sets. This is consis-
tent with our findings. Moreno et al. (2005) also report
a significant difference in power between the propor-
tional hazards methods and standard QTL mapping
methods when all observations are fully observed. This
relationship was most significantly observed with an

Figure 4.—Quantile–quantile plots for
phenotypes simulated from model 3
(gamma) under the null hypothesis. The-
oretical percentiles were calculated from
a chi-square distribution with 1 d.f. Sample
percentiles were calculated empirically by
simulating 1000 replicates of 1000 indi-
viduals under the null hypothesis. The
dashed line denotes the perfect relation-
ship between the sample and theoretical
quintiles. P-values were calculated from a
one-tailed Kolomonov–Smirnov test.

Figure 5.—Empirical power [shown via the mean �log10

(P-value)] for phenotypes simulated from model 3 (gamma) dis-
tributions with varying proportions of censoring. h, grouped
linear regression; 3, Cox proportional hazards regression; 1,
Weibull proportional hazards regression; ), standard linear
regression.
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additive effect of 0.30 and an absence of dominance
effects. Proportional hazards methods approximately
provided a power of 0.60 while standard QTL mapping
methods provided a power of 0.42 at the 95% level.
Moreno et al. (2005) report that for larger additive
effect sizes, and in the presence of dominance, the
difference between the proportional hazards and stan-
dard QTL mapping methods disappears. When we sim-
ulated data using model 1 (Weibull) we noted a slight
reduction in the mean test from the standard linear
regression method when compared to the survival
analysis methods. This reduction was much less marked
than that reported by Moreno et al. (2005). When we
simulated uncensored data from model 2 (exponential)
we detected no significant differences in terms of mean
test statistic when comparing the standard linear re-
gression method to the survival analysis methods used
here. Furthermore, when data were simulated from a
gamma distribution with no censoring, the standard
linear regression method was shown to have the most
power at the 95% level. Reducing the effect of the QTL
on the hazard to 3% (increased risk for genotype Qq
when compared to that of qq) allowed us to compare
more directly with the simulations performed by
Moreno et al. (2005). The reduction in QTL effect size
dropped the power to detect linkage to �0.6 at the 95%
level, similar to the power achieved by Moreno et al.
(2005). No significant difference was observed between
the power of proportional hazards and that of standard
methods. We changed the shape (r) of the Weibull
distributions from which the uncensored phenotypic

data were simulated. We again found no difference in
the power to detect linkage using either a proportional
hazards framework or a standard QTL-mapping pro-
cedure when simulating from Weibull distributions with
shape r ¼ 4 or r ¼ 6. Due to the way in which Moreno

et al. (2005) simulated and transformed phenotypic data
it is difficult to further examine the difference between
the two study findings.

The grouped linear regression method uses binary
survival indicators similar to those used by Madgwick

and Goddard (1989). A grouped approach was natural
for their data set as their data consisted of survival
through a series of different lactation periods, which are
predefined, biologically relevant time periods. A similar
method was adopted by Meuwissen et al. (2002) to es-
timate breeding values for functional survival, in a
simulated dairy cattle data set. The authors compared
both a linear and a logistic regression method to a pro-
portional hazards model and found no significant dif-
ference in estimated breeding value. In this study, we
have developed a grouped linear regression method for
survival traits with a continuous distribution. We have
shown that if a sufficient number of time periods are
chosen then little is lost in the way of power by grouping
the data. The conditional survival probabilities (group
survival indicators) are directly related to the hazard for
a particular interval. Asymptotically, with many time
intervals and a large number of observations per group,
the conditional survival probabilities, scaled by the
probability of survival until that time, are simply discrete
versions of the continuous hazard. Just as the hazard
function is a continuous approximation of a discrete
observation (survival or death at a particular point in
time), so the grouped approximation is a discrete ap-
proximation of a continuous distribution. With the
grouped linear regression model the effects on the
hazard are additive, whereas the usual assumption of
proportional hazard models is that the effects act in a
multiplicative manner. If the intervals are chosen such
that the conditional survival probabilities in different
time intervals are the same then the multiplicative and
additive models converge.

The power of the grouped linear regression method
was maximized, via simulation, prior to the comparative
power analysis. However, the gain in power achieved
by this is small. Our analyses demonstrate that most
nonextreme values of s and k closely approximate the
power provided by the optimal values. While it would
be possible to carry out this optimization step before
analyzing real data, it could be of relatively little benefit
and time consuming. Thus, the robustness of the
grouped linear regression method to the chosen num-
ber of time periods and group survival probability is
encouraging.

Current mapping methods require specialized soft-
ware for genomewide linkage analysis. The grouped
linear regression method uses standard linear regression

Figure 6.—Empirical power [shown via the mean �log10

(P-value)] for phenotypes simulated from model 4 (gamma) dis-
tributions with varying proportions of censoring. h, grouped
linear regression; 3, Cox proportional hazards regression; 1,
Weibull proportional hazards regression; ), standard linear
regression.
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methodology and thus can be implemented in many of
the widely available statistical packages, including the
freely available R that we used here. Expanding the
grouped linear regression method to a genomewide
level is straightforward. The ability to analyze genome-
wide marker data for linkage in freely available and easy
to use packages is significant, especially if this can be
done with little or no sacrifice in power.

In this study we simulated a backcross population;
however, the extension of the method for other line
crosses is relatively simple. Furthermore, it should
be possible to extend the method to more complex
situations such as the mapping of QTL with potentially
censored data in outbred populations. Current meth-
ods for the mapping of QTL using censored data in
general outbred populations are limited. Unlike in in-
bred lines where the QTL effect is fixed in both popu-
lations, not all individuals in an outbred population will
segregate a given QTL. Furthermore, unlike fully inbred
lines, each individual has a different genetic background
effect. A random-effects QTL model based upon mul-
tiple 0/1 indicator variables would naturally fit into a
linear mixed-model framework and would allow QTL
analyses in general pedigrees when a proportion of ob-
servations are censored.

In summary, we have described a computationally
efficient and fast method for the analysis of continuous
survival data. The grouped regression method is of
equal power when compared to other available methods
and is robust to changes in censoring proportion and
mechanism and to the underlying distribution of the
phenotype.
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APPENDIX: t CENSORING

Here we derive a value for the t parameter used in the
censoring method. For a general distribution of times to
events, f(T ), we want to find a value t such that a
random uniform variable between 0 and t is less than a
random value for T with a probability Pc. The general
solution to this problem is

PðT .CÞ ¼ ET ðPðT .C jCÞÞ

¼
ð‘

0
f ðT ÞPðT .C jCÞdT ¼ Pc;
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where C is the random censoring time. The probability
P T .C jCð Þ is calculated noting that all values of T
above t are censored. Thus,

PðT .C jCÞ ¼
Ð T

0
1
t
dC ¼ T

t
; T , t

1; T $t:

�

It follows that

PðT .CÞ ¼
ðt

0
f ðT ÞTdT 1

ð‘
t

f ðT ÞdT

¼ 1 �
ðt

0
f ðT ÞdT 1

1

t

ðt
0
Tf ðT ÞdT ¼ Pc:

For the cases of the Weibull and gamma examined
in this study, the value of t is solved by numerical
integration.
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