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Family-based genome-wide association studies

In the last 2 years, the effort to identify genes affecting common diseases and complex traits has been
accelerated through the use of genome-wide association studies (GWAS). The availability of existing large
collections of linkage data paved the way for the use of family-based GWAS. Although most published
GWAS used population-based designs, family-based designs have played an important role, particularly
in replication stages. Family-based designs offer advantages in terms of quality control, the robustness to
population stratification and the ability to perform genetic analyses that cannot be achieved using a
sample of unrelated individuals, such as testing for the effect of imprinted genes on phenotypes, testing
whether a genetic variant is inherited or de novo and combined linkage and association analysis.
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Transmission Disequilibrium Test

Over the last few decades, a huge effort has been
invested into the identification and characteriza-
tion of genes influencing human diseases and
phenotypes. While success stories have been
reported for Mendelian traits, the identification
of genes underlying complex diseases has been
slow and difficult (1. However, the development
of large-scale genotyping platforms, which was
precipitated by the completion of the Human
Genome Project [2,3], the availability of SNPs in
the public databases [2] and the completion of
the first and second stages of the International
Haplotype Map (HapMap) Project [3.4], allowed
the extension of genotype—phenotype associa-
tion studies from the realm of a small number of
candidate genes to that of an entire genome.

Unlike candidate gene association studies,
which test for the association between pheno-
types and variant(s) in biologically selected
gene(s), genome-wide association studies
(GWAS) test hundreds of thousands or millions
of SNPs covering the entire genome without
reference to any particular gene(s). The rapid
explosion in the number of GWAS has been
accompanied by the increase on the number
of reported associations between genetic vari-
ants and common complex diseases [101] and has
led to the implication of novel pathways in the
development of various diseases.

Published GWAS have mostly used samples
of unrelated individuals as, for a given geno-
typing budget, this is in general the most pow-
erful study design [101). However, much effort
has been put into collecting family-based sam-
ples, both in resources such as twin registries
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that collect both genetic and phenotypic
information on a large number of phenotypes
in twins and their families 5] and from clini-
cians studying disease phenotypes. These col-
lections formed the basis of the many linkage
studies performed in the pre-GWAS era and
remain valuable resources in the study of many
complex traits, including GWAS.

This review will provide a brief overview of
the methodology used in family-based associa-
tion studies followed by an examination of the
advantages and disadvantages of family-based
design compared to population-based designs.
Finally, we will review the published GWAS
that use family-based data, which were identi-
fied from a catalog of published GWAS [101]. The
summary of the published family-based GWAS
was not intended to be comprehensive, but it is
hoped to capture some of the interesting roles of

family data in published GWAS.

Analysis of family-based

association data

There are several possible family-based designs,
ranging from simple cases of parent—offspring
trios to large multigenerational pedigrees.
Different methods have been developed to per-
form an association analysis on these family-
based data [67]. While most methods use the
transmission of allele within informative fami-
lies (families with at least one heterozygous par-
ent) to assess the evidence for genetic associa-
tion (6], a number of methods were developed
to analyze all available data (e.g., Abecasis’s
‘total” association test [8]). Here, we will provide
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a brief overview of a simple family-based associa-
tion design in order to demonstrate the sources
of information on genetic association within
these designs and which of these components
are protected against population stratification.
A more detailed discussion of the methodology
for family-based association tests in more general
pedigrees is beyond the scope of this review and
can be found elsewhere (e.g., [7]).

To illustrate the use of allelic transmissions
within families, consider a simple family-based
design for detecting a genetic association to a
disease, the parent—offspring trio design, which
consists of families with an affected offspring
and both parents. The genotype—phenotype
association in this design is tested using the
Transmission Disequilibrium Test (TDT) [9].
This test was originally designed to detect link-
age in the presence of association [9], but since
it requires the presence of both linkage and
association in order to be significant, it is now
typically used as a test for association [1]. The
requirement for the presence of both linkage
and association is one of the biggest advantages
of this association test as the presence of link-
age makes the result robust against population
stratification and admixture, both of which can
cause potential false-positive associations [10].

In the TDT, an association between a marker
and disease is tested by comparing the number
of transmitted with nontransmitted alleles from
heterozygous parents to the affected offspring.
Any deviation from the 1:1 ratio expected from
Mendel’s laws suggests an association between
the allele and disease. To illustrate this, consider
the family in Ficure 1a. In this trio, the offspring
can have two possible genotypes depending on
the allele inherited from its mother, AA and Aa.
Under the null hypothesis, both genotypes are
expected to occur with 50% probability. Similarly,
in Ficure 1B the offspring can have three possible
genotypes, AA, Aa and aa, with probabilities of
25%), 50% and 25%, respectively. If in a collec-
tion of such families, one allele, say the A allele,
is preferentially transmitted to the offspring and
thus creating a significant deviation from the
expected genotype probabilities, then the locus
is said to be linked to the disease of interest. Note
that in the family represented in Ficure 1C, the
offspring always has genotype AA so this family
does not contribute to the test. It follows that only
families with at least one heterozygous parent can
contribute to the test for association. In other
words, there is a requirement for potential geno-
type variation within a family and thus this test is
called a ‘within-family’ test for association.
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Extensions to the methodology for the
analysis of family-based association analysis
allow the analysis of general pedigree struc-
tures [8,11], quantitative traits [12,13] and mul-
tiple phenotypes [14]. Tests of association using
family-based samples have also been extended
to include additional association information
from across families [8]. As its name suggests, a
within-family association test only uses infor-
mation from the allelic transmissions within
families. Additional information on genetic
association is available through a comparison of
allele frequencies across families and testing for
its association with the trait of interest [15]. With
carefully constructed test statistics, it is pos-
sible to separate the total association data into
independent within-family and between-family
components [15]. Ethnicity or population sub-
structure does not vary within families, but they
can vary between families. Thus, while the total
(combined between- and within-family) asso-
ciation is more powerful, only the within-family
component is robust to the effects of population
stratification. Furthermore, the independence of
the between- and within-family tests for asso-
ciation makes it possible to explicitly test for the
effects of population stratification by compar-
ing the estimated allelic effect on the trait of
interest from the two tests [15].

The genome-wide approach to association
studies provide a good coverage of the genome,
but at the same time it creates a multiple test-
ing problem due to hundreds of thousands of
statistical tests performed. The question on what
is the association test p-value to be declared
significant may be answered by a Bonferroni
correction, false-discovery rate or other meth-
ods [16]. For example, the Wellcome Trust Case
Control Consortium declared that association
test p-value of 5 x 107 to be significant [17].

Advantages & disadvantages of
family-based design in genome-wide
association studies

While it is generally accepted that association
analysis using unrelated individuals is more
powerful than using related individuals [18,19],
there are several advantages that family-based
designs have to offer. Primary among the advan-
tages of family-based association studies is the
robustness of the design to the effects of popu-
lation stratification or structure as discussed
above. It is well known that population-based
genetic association analyses are subject to spuri-
ous associations caused by factors such as ethnic-
ity, admixture and population stratification [20].
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With dense genome-wide SNP data, it becomes
possible to detect and remove individuals with
admixed ancestries (e.g., through the use of
multidimensional scaling as in [17]). Such meth-
ods can even detect subtle population differ-
ences between countries in Europe [21.22]. In
order to achieve the large sample sizes necessary
to have sufficient power for a GWAS, it is often
necessary to accept a small amount of subtle
stratification. However, even small amounts
of stratification can lead to false positives, and
care must be taken in the analysis to avoid this
when not using within-family association tests.
An example of the effect of subtle population
stratification in an association study is provided
by Campbell ez a/. who found an association
between a SNP in the lactase (LCT) gene and
height in a European American population (a
mixture of populations derived from differ-
ent parts of Europe) [23]. Later they discovered
that the apparent association between the LCT'
gene SNP and height was due to the fact that
the LCT gene SNP and height were correlated
with grandparental ancestry along an approxi-
mately northwestern—southwestern axis in
Europe [23].

Family-based designs offer a more thorough
genotype quality control mechanism, especially
with respect to the detection of Mendelian
errors. Genotyping errors can be detected by
noting inconsistencies between a parent and
his/her offspring’s genotype, providing a direct
estimate of genotyping error rate. As SNPs gen-
erally have only two alleles, the proportion of
genotyping errors detected is in the range of
25% [24] for a parent—offspring pair, but the
detectable proportion of genotyping errors
is increased with additional relatives and the
examination of genotypes that would force
unlikely recombination events within the fam-
ily. Apart from the removal of incorrect geno-
types, the use of Mendelian inconsistencies also
allows the detection, and possible resolution, of
sample mix-ups.

A further advantage of family-based design
is the possibility of genotyping a subset of
individuals within families, but including the
phenotypes and imputed genotype probabili-
ties of the ungenotyped relatives in the total
association analysis. Chen and Abecasis have
shown that for the same number of genotyped
individuals, the total association test in related
individuals that includes ungenotyped relatives
is much more powerful than an association test
using unrelated individuals [25]. This approach
is particularly advantageous in a study where,
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Figure 1. Example of a simple family-based study design demonstrating
the source of within- and between-family information in family-based
association studies. In families (A) and (B) the genotype of the offspring is

not completely determined by the parental genotypes. Across a collection of

such families, potential variation in offspring genotype is used for the
within-family association test. The genotype of the offspring in family (C) is

completely determined by the parental genotypes and so does not contribute
to the within-family test, but it can still contribute to between-family and total

tests of association.

the genotyping budget is limited to genotype,
only a subset of available samples and marker
data from previous linkage analysis is available
across individuals that were not genotyped for
genome-wide association [25].

Family-based designs offer a variety of genetic
analyses that cannot be performed using a
sample of unrelated individuals. By using fam-
ily-based designs, we can test for the effect of
imprinted genes on phenotypes [26]. Some stud-
ies have shown that the parental origin of geno-
types has an effect on the phenotypic expres-
sion of complex traits (e.g., [27]), although these
parent-of-origin effects may only affect a small
proportion of genes [28]. We can also exam-
ine whether a particular allele is inherited or
de novo [29.30]. This is of particular interest when
examining the effect of copy-number variants
where de novo variants appear to occur with a
greater frequency. For example, Sebat ez a/. have
demonstrated that de novo variants were sugnifi-
cantly associated with autism [30]. Another use
of family-based data is the possibility to per-
form combined linkage and association analy-
sis. This type of analysis tests whether a linkage
between disease locus (generated from linkage
analysis) and disease can be explained by asso-
ciation of candidate SNP. Combined linkage
and association analysis can be useful for fine
mapping [31] and for testing locus heterogeneity
in the population [32].

As with any other design, family-based
association designs also have their disadvan-
tages. Compared to population-based design,
which uses a sample of unrelated individuals, a
notable disadvantage of family-based design is
that it has less power per genotype. Theoretical
and simulation studies have shown that designs
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based on affected and unaffected sibs have less
power than designs using unrelated individuals
as controls [18,19]. In the absence of popula-
tion stratification, the loss of power by using
the TDT (within-family test) method can
be substantial [33]. Chen and Abecasis noted
that the power loss in family-based design is
due to the fact that the same marker was used
for both testing the association and to guard
against population stratification [25]. This loss
in power can be substantial when consider-
ing only the within-family test. However, if
the total association is being considered, the
loss of power due to the relatedness of indi-
viduals in family-based designs is small [34].
Also, the power can be increased by including
sibships with multiple affected sibs [18,19] and
ungenotyped relatives [33].

Other disadvantages of family-based designs
include their sensitivity of the results of their
analyses to genotyping error [36,37], although this
is somewhat circumvented due to the increased
genotype error checking afforded by the related
individuals. The analysis of family-based asso-
ciation studies is also computationally more
demanding compared to that of a sample of
unrelated individuals, thus requiring special-
ized software. Finally, family-based designs
that require parental information, such as the
parent—offspring trio design may not be prac-
tical for late-onset diseases. However, this can
be overcome by using sib design rather than
parent—offspring design [38].

Statistical packages for the analysis of
family-based association data

There are several publicly available statistical
software packages that can be used to perform
family-based association analysis (Tase 1). While
some were developed specifically for family-
based designs (e.g., family-based association
testing [FBAT] 1391, GHOST [25], PBAT (401,
quantitative tansmission disequilibrium tests
[QTDT] (81 and TRANSMIT [41]), others were
developed for general association analyses, but
provide support for some family-based designs
(e.g., PLINK [42], UNPHASED [43] and whole-
genome association pipeline [WASP]). Also,
several statistical genetics packages that are
primarily aimed toward other genetics analy-
ses (e.g., linkage, linkage disequilibrium or
haplotype block analysis) can also be used to
perform family-based association analysis,
including FAMHARP [44], HAPLOVIEW [45],
multipoint engine for rapid likelihood inference

(MERLIN) [46] and SIB-PAIR [47].
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Published genome-wide association
studies using family data

Prior to August 2008, there were 173 published
GWAS [101] with at least 36 of them (including
the 17 published GWAS from the Framingham
Heart Study (48]) using a family-based study
design either during the initial screening or the
replication stage. A list of published GWAS that
used family data (plus a summary of 17 GWAS
from the Framingham Heart Study series [48)) is
presented in Taste 2.

It can be seen from Tasie2 that only one pub-
lished GWAS used a family-based design for
both the initial screening and replication sam-
ples (49]. The Framingham Heart Study series,
which used family data in the initial screening
stage, did not feature a replication stage in any of
its publications. Most studies used a combination
of family-based and case—control designs, with
the use of population-based design for the initial
screening sample and family-based design as the
replication sample being favored (e.g., [50-52]).
This approach is attractive as the higher power
of population-based samples compared to the
family-based samples is particularly advanta-
geous during the screening of large numbers of
SNPs due to the rigors of multiple testing. Using
a family-based design for the replication stage
removes the potential for significant associations
to be caused by population stratification and thus
any replicated genotype—phenotype associations
are more likely to be genuine.

Another point to be taken from the pub-
lished family-based association studies is that
not all use the within-family test (TDT test).
For example, Scuteri et al. used the total associa-
tion (using all observed/estimated genotypes)
for testing the association between SNPs and
obesity related traits [49]. While this test uses
more data and thus is more powerful, it is not
protected against the effects of population strati-
fication. As false-positives caused by population
stratification are a primary concern, they then
applied genomic control to adjust for the effects
of population stratification.

The series of papers published from the
Framingham Heart Study [48] form the larg-
est family-based association study published
in terms of the number of phenotypes ana-
lyzed [53-69]. A total of 17 phenotype groups
were examined, ranging from obesity to cancers,
but mostly related to cardiovascular diseases,
with each published in a separate paper. By
genotyping 1345 individuals from 310 families
using 100K Affymetrix GeneChips®, these stud-
ies demonstrate the use of large phenotypic and
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Table 1. List of publicly available software that support family-based association analyses.

Study Software Analysis options Website Ref.
Abecasis etal.  MERLIN Total association analysis (not robust to population stratification) www.sph.umich.edu/ [25,46]
csg/abecasis/merlin/
Abecasis etal.  QTDT Family-based association analysis, including total- and www.sph.umich.edu/ (8]
within-family association csg/abecasis/QTDT/
Combined association and linkage analyses index.html
Barrett et al. HAPLOVIEW  Single SNP and haplotype association tests (including TDT) www.broad.mit.edu/ [45]
Linkage disequilibrium and haplotype block analyses node/443
Visualization and plotting of PLINK GWAS results
Becker et al. FAMHAP Association analysis of nuclear family data http://famhap.meb. [44]
Test for imprinting in nuclear family data uni-bonn.de/
GWAS and genotype imputation
Haplotype association analysis
Chen et al. GHOST Designed for GWAS www.sph.umich.edu/ (25]
Association analysis of family data csg/chen/ghost/
Can handle large pedigree and infer missing genotypes
Clayton et al. TRANSMIT TDT analysis WwWw-gene.cimr.cam. (41]
Marker haplotypes based on several closely linked markers ac.uk/clayton/software/
(no longer maintained)
Dudbridge UNPHASED Analysis of nuclear families and unrelated subjects, and www.mrc-bsu.cam.ac. (43]
combinations of the two uk/personal/frank/
Analysis of discrete or quantitative traits software/unphased/
Maximum likelihood treatment of missing genotype data and
uncertain haplotypes
Global association tests and tests of individual haplotypes
Conditioning tests that allow for previous associations of
linked loci
Inclusion of information from additional tag markers
Support for nongenetic covariates including parent-of-origin
Permutation tests allowing for multiple testing
Duffy SIB-PAIR Various basic genetic analyses www.gimr.edu.au/ (102]
Allelic association with a binary or quantitative trait davidD/sib-pair.html
Combined association and linkage analyses
Imputation of genotypes
Laird et al. FBAT A variety of family-based association analyses www.biostat.harvard. [39]
Association tests on sex-linked X-chromosome markers edu/~fbat/default.html
Lange et al. MENDEL Haplotypes estimation www.genetics.ucla.edu/ (73]
Allelic association using TDT or gamete competition model software/mendel
Association analysis on quantitative traits
Combined association and linkage analyses
Lange et al. PBAT A variety of family-based association analyses, including for www.biostat.harvard. [40]
univariate and multivariate data, gene/covariate interaction and  edu/~clange/default.
time to onset/survival data htm
Purcell et al. PLINK Designed for GWAS http://pngu.mgh. [42]
Summary statistics for data quality control harvard.edu/~purcell/
Various association test, including family-based association test ~ plink/
(TDT, sibships test)
Multimarker/haplotypic tests
Joint SNPs and CNVs association tests
Epistasis, gene—environment analyses
Vanderbilt WASP Designed for GWAS http://chgr.mc. -
University Summary statistics for data quality control vanderbilt.edu/wasp/
Association analyses (TDT and case—control)
GUI data plotter
CNV: Copy number variant, GUI: Graphical user interface; GWAS: Genome-wide association studies, TDT: Transmission disequilibrium test.
genetic collections previously used in genetic  an initial resource for future replication studies or
linkage studies are still valuable resources in the  meta-analysis, there was no attempt to replicate
era of GWAS. Since these papers were aimed as  the findings in independent sample(s).
f58 future science group www.futuremedicine.com 185
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Executive summary

= Less power.
= Sensitive to genotyping error.

Available software for analysis

Family-based genome-wide association studies

= Family-based genome-wide association studies (GWAS) are aimed to identify genetic variants associated with complex diseases/
phenotypes using samples of related individuals genotyped with a very large number of genetic markers (e.g., SNPs).

Advantages of family-based compared to population-based designs

= Can make use of the existing family-based (linkage) data collected in pre-GWAS era.

= Robust to the possible effects of population stratification.

= The ability to perform a thorough genotyping quality control (e.g., Mendelian inheritance error and sample mix-ups).

= Provide a platform to perform additional genetic analyses, such as testing for the effect of imprinted genes on phenotypes, testing
whether an allele is inherited or de novo and performing combined linkage and association analyses.

Disadvantages of family-based compared to population-based designs

= Computationally more demanding and requires specialized software.
= May not be practical for late-onset diseases.

Published family-based genome-wide association studies

= Family-based designs are frequently used during the replication stage.

= A variety of software for analyzing family-based GWAS data is available.
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