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ABSTRACT Principal components analysis has been employed in gene expression studies to correct for population substructure and
batch and environmental effects. This method typically involves the removal of variation contained in as many as 50 principal
components (PCs), which can constitute a large proportion of total variation present in the data. Each PC, however, can detect many
sources of variation, including gene expression networks and genetic variation influencing transcript levels. We demonstrate that PCs
generated from gene expression data can simultaneously contain both genetic and nongenetic factors. From heritability estimates we
show that all PCs contain a considerable portion of genetic variation while nongenetic artifacts such as batch effects were associated to
varying degrees with the first 60 PCs. These PCs demonstrate an enrichment of biological pathways, including core immune function
and metabolic pathways. The use of PC correction in two independent data sets resulted in a reduction in the number of cis- and trans-
expression QTL detected. Comparisons of PC and linear model correction revealed that PC correction was not as efficient at removing
known batch effects and had a higher penalty on genetic variation. Therefore, this study highlights the danger of eliminating
biologically relevant data when employing PC correction in gene expression data.

GENE expression profiling has become a very popular
technique used to quantify regulatory changes in mes-

senger (m)RNA expression associated with disease and en-
vironmental factors. Gene expression acts as an intermediate
phenotype between genotypes and complex traits and is
known to act as a modifier to disease susceptibility (Nica
and Dermitzakis 2008; Li et al. 2012). Genetic variation un-
derlying gene expression levels has been well established
and reported within the literature, with the transcript levels
for the majority of genes being heritable to some degree
(Price et al. 2011; Grundberg et al. 2012; Powell et al.
2012b).

Microarray technology can simultaneously capture the
expression of thousands of transcripts within an individual.

However, these arrays are sensitive to environmental or
experimental perturbations, for example due to different
laboratory technicians and reagents (Churchill 2002;
Irizarry et al. 2005), microarray chip and chip position (Luo
et al. 2010), temperature (Scherer 2009), and even ozone
levels (Thomas et al. 2003). These effects can constitute
a substantial proportion of variance within a data set (Leek
et al. 2010).

Normalization strategies have become standard in gene
expression studies to correct for nonnormal distributions
and inconsistencies between arrays (Allison et al. 2006).
However, normalization techniques do not control for batch
effects caused by technical artifacts. These batch effects re-
quire additional correction techniques (Scherer 2009) and
failure to do so has led to spurious associations (Spielman
and Cheung 2007; Baggerly et al. 2008).

Many different correction and normalization techniques
are currently used in gene expression studies (for review see
Chen et al. 2011; Qin et al. 2012). Principal components
analysis (PCA) is one method that has been used for the
correction of widespread batch effects (Leek and Storey
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2007; Pickrell et al. 2010; Fehrmann et al. 2011; Qin et al.
2012). PCA determines linear combinations of variables and
projects them into orthogonal vectors that are ranked on
variance explained (Jackson and Wiley 1991). PCA is often
used for dimensionality reduction (Holter et al. 2000), iden-
tifying gene correlations (Fukushima et al. 2008); determin-
ing coexpressed networks (Hirai et al. 2007); classifying
gene expression modules (Fukushima et al. 2008); analyz-
ing time-series data (Raychaudhuri et al. 2000); and deter-
mining differentially expressed genes in different tissues
(Misra et al. 2002), environments, and various conditions
(Ma and Kosorok 2009).

Clearly PCA is a powerful tool to analyze and un-
derstand high-dimension gene expression data. However,
while PCA is commonly used to decompose variation into
common axes, the components of variation contributing to
each principal component (PC) are often unknown. In-
formation on the components of variation captured by PCs
is important if the correct inferences and interpretation of
PCA results are to be made. A clear example is in the use of
PCs to correct for batch effects, where variation in the first
1–50 PCs is removed from the data set by fitting these PCs
as covariates in a linear model and using the residuals as
a corrected phenotype (Leek and Storey 2007; Stegle et al.
2008; Leek et al. 2010; Fehrmann et al. 2011; Fu et al.
2012; Qin et al. 2012; Stranger et al. 2012). Although this
method has been demonstrated to increase the power to
detect eQTL by eliminating confounding batch and envi-
ronmental effects (Fehrmann et al. 2011), there is a risk of
the indirect removal of biologically relevant information
due to the large amount of variance held in the first few
PCs (Qin et al. 2012).

In this study we investigated the sources of variation
driving PCs generated on a gene expression data set
produced from whole blood. This data set is composed of
860 individuals from 314 families from the Brisbane
Systems Genetics Study (BSGS) (Powell et al. 2012a). We
combine the power of pedigree and SNP-based designs to
quantify and dissect the total genetic variance of PCs. From
these results we demonstrate that the PC correction meth-
ods used in published literature (for example, in Fehrmann
et al. 2011; Fu et al. 2012) simultaneously remove both
genetic variation and batch effects. We also show that with
careful analysis, the information contained within PCs can
be leveraged to provide an understanding of gene expres-
sion pathways underlying complex disease. We use these
results to emphasize the importance of using other correc-
tion methods when applicable instead of removing PCs to
correct for batch effects.

Materials and Methods

Samples

A total of 335 unrelated individuals were selected from
the BSGS, a cohort comprising 860 individuals from 314

families (Powell et al. 2012a). Individuals were selected on
two criteria: the first was to obtain the maximum number
of unrelated individuals by selecting parents (n = 165) and
a single individual from families with no parents (n =
170). Unrelated individuals were selected from this data
set to exclude family effects from being present within the
PCs. All individuals were genotyped on an Illumina 610-
Quad Beadchip (Illumina, San Diego) by the Scientific
Services Division at deCODE Genetics, Reykjavik, Iceland.
A total of 488,462 SNPs were present after appropriate
quality control (see Genome-wide association study on PCs
below).

RNA was collected from whole-blood samples that were
collected in a PAXgene tube (QIAGEN, Valencia, CA),
analyzed for purity on an Agilent Bioanalyzer, converted
to cDNA, amplified, and purified using the Ambion Illumina
TotalPrep RNA Amplification Kit (Ambion). The expression
levels were quantified on an Illumina HumanHT-12 v4.0
Beadchip. Samples were randomized across the chip to
minimize batch effects due to families, sex, and generation.
Quality control methods for selecting highly expressed
probes in the samples are described in detail in Powell et al.
(2012a). After appropriate quality control, the probes
were further filtered for expression in 100% of samples.
Probe names starting with HS, KIAA, and LOC were re-
moved from the data set, as they did not map to charac-
terized ref-seq genes. After filtering, a total of 9086 probes
remained.

Replication sample

The Center for Health Discovery and Well Being (CDHWB)
study is a population-based cohort consisting of 139
individuals collected in Atlanta (Nath et al. 2012). Gene
expression profiles were generated with Illumina HT-12
V3.0 arrays from whole blood collected with Tempus tubes
that preserve RNA. Whole-genome genotypes were mea-
sured using Illumina Omni Quad arrays.

Normalization and batch effect correction

The gene expression levels of the 9086 probes were
normalized using the quantile, log2, and z-score transforma-
tion. Correction methods were then applied to create four
different data sets that were used for further analysis. These
are (a) standard normalization (log, quantile, and z-score
transformation), (b) standard normalization with linear
model correction for batch effects, (c) standard normaliza-
tion with correction for 1–25 PCs, and (d) standard normal-
ization with correction for 1–50 PCs. These data sets/
correction procedures are referred throughout this article
as data sets a–d.

Batch effects arise from various sources during the
generation of the data and processing date records can
provide a useful estimate of differences between subsets of
groups (Qin et al. 2012). In previous work (Powell et al.
2012a), we showed that chip identification (ID) and chip
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position comprehensively account for batch effects. Data set
b was created using the residuals from a linear model with
the batch effects of chip ID and chip position as well as sex
and age as covariates. This model was fitted as

y ¼ Xbþ e; (1)

where

y ¼
0
@

y1
⋮
yn

1
A

is a vector of probe values from data set a with n = 335
individual values.

X ¼
0
@

1 x1 ⋯ x1c
⋮ ⋮ ⋱ ⋮
1 xn . . . xnc

1
A

is a matrix with c = 86 covariates: chip position (11 levels),
chip ID (73 levels), and sex and generation, which were
coded as dichotomous variables.

b ¼

0
BB@

m
b1
⋮
bc

1
CCA

is a vector of parameters for the model. The parameter m

represents the mean expression level across all the individ-
uals. The vector

e ¼
0
@

e1
⋮
en

1
A

holds the model residuals. The parameters in b are esti-
mated by

b ¼ �
XTX

�21
XTY: (2)

Data sets c and d were created from the residuals obtained
after correcting for the first 25 and 50 PCs using Equation 1,
where y was the normalized data set (a) and the PC score
values (Equation 3, see below) obtained from data set a were
fitted as covariates in X. The first 50 PCs were selected to
follow the procedure used in previously published gene ex-
pression articles (Fehrmann et al. 2011; Fu et al. 2012).

Principal components

PCs were calculated on data set a to facilitate PC correction,
which was used to generate data sets c and d. PCs were also
calculated on all four data sets a–d to analyze the extent of
batch effect associations. To follow the methods used in
previous gene expression studies (Leek and Storey 2007;
Fehrmann et al. 2011; Fu et al. 2012), the principal compo-
nents used in this study were generated using singular value

decomposition (SVD). SVD decomposes the high-dimensional
data set

M ¼
0
@

m11 ⋯ m1p
⋮ ⋱ ⋮

mn1 ⋯ mnp

1
A;

with n= 335 (samples) and p= 9,085 (probes), into a set of
uncorrelated, orthogonal vectors

M ¼ USVT; (3)

where

U ¼
0
@

u11 ⋯ u1n
⋮ ⋱ ⋮

un1 ⋯ unn

1
A

is a matrix with score values for each PC (columns), which
gives the correlation values between the samples (rows).

S ¼
0
@

e1
⋮
en

1
A

is a diagonal matrix containing the eigenvalues, which
represent the amount of variance each PC explains.

V ¼
0
@

v11 ⋯ v1n
⋮ ⋱ ⋮

vp1 ⋯ vpn

1
A

are the eigenvectors that hold the correlation values for each
probe (rows) to the PC (columns) (Golub and Reinsch 1970).

Data set a demonstrates a homogenous variance struc-
ture within the score plots (Supporting Information, Figure
S1) with no clear population stratification or substructure
comprising independent clusters of individuals. As this data
set contains the same information as b–d, this indicates the
uniform nature of the samples within the BSGS data set.

The eigenvector values in V (Equation 3) represent the
correlation between the probes and the principal compo-
nent. As multiple probes are correlated with each PC, the
selection was based on the eigenvector values for each
probe. The minimum eigenvector demonstrates the largest
negative correction, while the maximum eigenvector dem-
onstrates the largest positive correlation. Across all PCs the
maximum eigenvector values ranged between 0.02 and 0.08
and the minimum values ranged between 20.02 and 20.08
(Figure S2A). The PCs that demonstrated the smallest max-
imum and minimum values were the first 1–20 PCs. As the
number of probes selected for each PC can affect later en-
richment analysis, we wanted to select a consistent number
of probes between all PCs. Therefore a cutoff eigenvector
value was used to select probes as this produced the most
consistent results and provided a standard approach to use
for all PCs. This cutoff value, selected to be , 20.02 or
.0.02, incorporated the maximum and minimum values
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for all PCs to ensure that only the most highly correlated
probes for each PC were selected. This eigenvector cutoff
value chose a consistent number of probes (�550) across
all the PCs (Figure S2B). The eigenvalues for the first 10 PCs
were confirmed via linear regression with the relationship
tested using an F-test and P-values corrected for multiple
testing, using a Bonferroni adjustment.

Association with batch effects

Principal variance components analysis (PVCA) was used to
quantify the extent of batch, age, and sex effects within data
sets a–d. This method has been described fully previously
(see Li et al. 2009). PCs are generated by an eigenvalue
decomposition of a covariance matrix, and the batch effects
are quantified with a linear mixed model, using the batch
effect terms as covariates. The variance components in each
model are estimated using restricted maximum likelihood
and are scaled by the eigenvalues obtained for each PC.
The variance attributed to each factor is divided by the var-
iance (determined from the eigenvalue) of the correspond-
ing PC and then standardized across all factors.

A similar method was used to quantify the extent of batch
effects on the principal components obtained from SVD.
Score values obtained from the SVD of data sets a–d were
tested for batch effect association, using a multiple linear
regression model (Equations 1 and 2), where y is a vector
of score values for one PC, with n = 335 individual score
values. X is a matrix with c = 86 covariates: chip position
(11 levels), chip ID (73 levels), and sex and generation,
which were coded as dichotomous variables.

The R2 values for the linear regression are calculated as
the sum of squares explained by the regression (SSL) di-
vided by the total sum of squares (SST), which gives the
percentage of variance in each PC that is associated with
batch effects,

R2 ¼ 12 SSL
SST

; (4)

and are adjusted for multiple covariates using

R2adj ¼ 12
ð12R2Þðn2 1Þ
ðn2 c2 1Þ : (5)

P-values were obtained from an F-test of the total variance
explained by the model as opposed to total variance. Multi-
ple testing was accounted for by Bonferroni correction.

Estimation of heritability

To assess the extent of genetic variability held within the
PCs that are removed for PC correction in data sets c and d,
estimates for heritability were calculated for all PCs gener-
ated from data set a. To compute heritability for the PCs the
score values for related individuals had to be estimated. This
was done to minimize the presence of family trends within
the PCs and to retain the same PCs between expression (e)
QTL and heritability analyses. The estimated scores were

calculated by multiplying the probe values for those
individuals by the eigenvectors calculated from the PCA
decomposition,

Uest ¼ XV; (6)

where

Uest ¼
0
@

u11 ⋯ u1n
⋮ ⋱ ⋮

un1 ⋯ unn

1
A

is the resulting matrix of estimated PC score values with n =
425 individuals.

X ¼
0
@

x11 ⋯ x1p
⋮ ⋱ ⋮

xn1 ⋯ xnp

1
A

is a matrix of probe values with P = 9085 probes.

V ¼
0
@

v11 ⋯ v1n
⋮ ⋱ ⋮

vp1 ⋯ vpn

1
A

is a matrix of eigenvectors, previously derived from the
analysis of data from the 335 unrelated individuals.

Uest was combined with U from the original PCA to create
an ℝ8603 335score matrix containing values of all individuals
for the 335 PCs.

Heritabilities were estimated for the PCs generated from
data set a, using Quantitative Trait Disequilibrium Test
(QTDT), which partitions variance components attributed to
additive genetic, environmental, or common family variance
(Abecasis et al. 2000). This method utilizes the complete
pedigree structure within the data. Two models were com-
pared in this analysis: an AE model, which includes an ad-
ditive genetic component and a unique environment
component, and a CE model, which includes common and
unique environment components. Additive genetic, com-
mon, and unique environment variance estimates were di-
vided by the total phenotypic variance to determine the
proportion contributed by each factor.

Heritability estimates for all probes were calculated using
QTDT on the full data set of 860 individuals. The full data
set was corrected using the same four methods used for data
sets a–d. The distributions of probe heritability estimates
obtained from the four different correction methods were
compared. QTDT heritability estimates are constrained to
have a minimum value of 0.

Genome-wide association study on PCs

A genome-wide association analysis for each PC was
performed using PLINK software (Purcell et al. 2007) on
data set a to provide an independent assessment of genetic
effects present for PCs. SNPs were filtered based on a minor
allele frequency .0.05, missingness .0.10, and Hardy–
Weinberg equilibrium P-value ,1e-6. After filtering, 488,462
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SNPs remained for analysis. Significance was determined
both at a family-wise error rate, using Bonferroni correction
at an a-level of 0.05, and with an empirical P-value estima-
tion for each PC, using 1000 permutations in PLINK (Purcell
et al. 2007).

eQTL analysis

To determine the impact of each of the different correction
methods employed in data sets a–d, an eQTL analysis was
performed for each probe within these four data sets, using
the same procedure as described above. To replicate the
effect on eQTL detection we performed the sample analysis
for an independent sample comprising 139 unrelated indi-
viduals (CHDWB). Cis- and trans-eQTL at multiple FDR lev-
els (Benjamini and Hochberg 1995) were extracted and
compared between the data sets. Cis-eQTL associations are
defined as being within 61 Mb of the gene tested.

Biological pathway analysis

The pathway analysis was performed on the online Data-
base for Annotation, Visualization and Integrated Discovery
(DAVID) Bioinformatics Resources 6.7 (Da Wei Huang and
Lempicki 2008). Probes associated to the PCs of interest
were submitted as a list of Illumina probe IDs and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway en-
richment was performed using the Functional Annotation
Chart implemented by DAVID (Sherman et al. 2007). Signif-
icance of pathway enrichment was determined from a mod-
ified Fisher’s test, which calculates the chance that a set of
genes of related terms is presented at a certain percentage in
the list. Multitesting was accounted for, using a Benjamini–
Hochberg false discovery rate (FDR) of 0.05 (Benjamini and
Hochberg 1995).

Results

Nongenetic contributions to PCs

PVCA was used to estimate the extent of batch, sex, and age
effects within the whole data set (Boedigheimer et al. 2008;
Li et al. 2009). This method involves first decomposing the
data set into a series of PCs and estimating the effects of
each covariate on these components. The total variance of
each covariance is then summed across all PCs and scaled by
the respective eigenvalue. PVCA was applied to data sets a–
d to compare the effectiveness of these methods at removing
batch effects from the data.

For data set a, batch effects explained 29.2% of the total
variance, with chip ID having the largest effect (Figure 1A).
This proportion is far less than the 75.5% cumulative vari-
ance explained by the first 50 PCs (Figure S3A), which were
removed in previous studies to correct for batch effects
(Fehrmann et al. 2011; Fu et al. 2012). The results from
linear model correction (Figure 1B) and PC correction (Fig-
ure 1, C and D) show that the majority of batch effects have
been removed using these methods.

To analyze how batch effects are distributed across PCs,
each of the four data sets a–d was decomposed using SVD
into 335 PCs. Multiple regression of each PC on chip ID, chip
position, sex, and age was used to analyze the distribution of
these effects across all PCs. The majority of variance attrib-
uted to batch effects in the normalized data set a was held
within the first 58 PCs of the data set (Figure 2A), with the
proportion of variance explained by batch effects ranging
from 24% to 74%. This indicates that unknown sources of
variance, not associated to batch, sex, or age effects, are also
present within these PCs. As the initial PCs pick up the
majority of variance within the data set (Figure S3A), sig-
nificant associations to these PCs indicate a much larger
impact of batch, sex, and age effects within the data set.
Therefore signification association to the later PCs as in Fig-
ure 2B demonstrates a negligible effect (as quantified for
each data set in Figure 1). Batch effect associations to the
first few PCs are expected to occur more frequently than in
later PCs, because the initial PCs can capture the majority of
correlation structure within the data set (Jackson and Wiley
1991).

Overall it is clear that batch effects have a large impact on
gene expression variation. However, fitting these as cova-
riates in a linear model during the correction procedure
removes the presence of these batch effects (Figure 1B).
This correction procedure (data set b), which fits all batch
effects as individual factors in a linear model (see Materials
and Methods), removes the vast majority of associations with
batch effects in the principal components generated on the
residuals (Figure 2B). There was only one significant asso-
ciation with PC330 present in this corrected data set and
that accounted �0% of the variance, which explains why
the variance attributed to batch effects was calculated to
be zero with PVCA (Figure 1B). Batch effects were also
efficiently removed in data sets c and d, which were cor-
rected for the first 25 PCs (68.4% of the variance) and 50
PCs (75.5% of the variance) (Figure 1, C and D, respec-
tively). However, there are still 6% and 2% associations to
batch effects in data sets c and d, respectively, and analyses
of PCs generated on these two data sets show many compo-
nents capturing these residual batch effects (Figure 2, C and
D, respectively). These results indicate that PC correction
does not remove known batch effects as effectively as cor-
recting for chip ID, chip position, sex, and generation with
linear models.

Traditionally the last few PCs, which contain only a small
fraction of the variance, are removed as they are attributed
to noise or experimental error (Gauch 1982). However, the
correlation structure present in the data set can drastically
change which PCs are attributed to noise or batch effects
(Peres-Neto et al. 2005). In gene expression data, it has been
demonstrated that the final PCs usually hold genetically
relevant information (Yeung and Ruzzo 2001; Ma and
Kosorok 2009). Due to the large amount of variance that
has been attributed to batch effects within gene expression
data sets (Leek et al. 2010), removal of PCs has recently
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focused on the initial PCs (up to 50) that explain the major-
ity of the variance within the data sets (Stegle et al. 2008;
Fehrmann et al. 2011; Fu et al. 2012; Qin et al. 2012). We
demonstrated that the initial PCs did have the highest asso-
ciation to these batch effects. However, the variability in
which PCs are associated with the batch effects (Figure
2A) makes it difficult to just select an arbitrary number of
components to correct for. Removing an uninformed number
of PCs could lead to inefficient correction as opposed to
using linear models with recorded batch effects. Other

factors including biological information could be present
alongside these artifacts in these PCs, although we acknowl-
edge that additional batch effects, not recorded, may also be
present.

Genetic contribution to PCs

To determine the total genetic component of the PCs that
would be removed when using PC correction (as in data sets
c and d), heritabilities were estimated for all 335 PCs
generated from the normalized data set a (see Materials and

Figure 1 (A–D) Principal variance components analysis (PVCA) of gene expression data sets. PVCA calculates the proportion of variance in the entire
data set that is attributed to certain batch, sex, and age effects. Altogether batch, sex, and age effects account for 29% of the variance in the
noncorrected data set (A) and are fully removed in the corrected data set (B). Batch effects present in PC corrected dataset are represented in (C) PC25
and (D) PC50. The residuals represent the remaining variance in the data set not attributed to these batch effects.
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Methods). The heritability estimates showed that there was
a considerable genetic component to nearly all 335 PCs gen-
erated (Figure 3). The mean of the heritability across all PCs
was 0.429 (SD 0.1), with the first 50 PCs having an average
heritability of 0.39 (SD 0.13). This demonstrates that a high
genetic component is still captured in the first 50 PCs de-
spite the strong association to batch effects. Comparisons
between genetic and common family environment models
indicate that there is a slight confounding between the two
(Figure S4). There is a significant association between the
estimates between the two models with an R2 = 0.08 (P =
8.57e-08). This indicates that the heritability estimates
could be slightly biased upward due to confounding with
common family effects (Lynch and Walsh 1998).

To assess the impact of linear model and PC correction on
genetic variation, we estimated the heritabilities of the 9086
probes in the entire data set of 860 individuals, using the
same four correction methods a–d (see Materials and Meth-
ods). Mean heritabilities for the 9086 probes from the four
normalization strategies were 0.32, 0.23, 0.21, and 0.18,
respectively (Figure 4). The high mean heritability from
strategy a is likely due to inflation from batch effects such

as the date of RNA extraction, which was performed in fam-
ily groups and therefore could not be corrected without re-
moving heritable variation. With PC corrections c and d,
there was a much higher proportion of zero heritability
probes as opposed to those in strategy b. The lower mean
estimate and the higher proportion of zero heritability
probes when correcting for 1–50 PCs suggest that PC cor-
rection has a much higher penalty of genetic variation than
linear model correction.

To investigate the impact of PC correction on eQTL
detection, we ran a series of eQTL analyses for each probe in
the unrelated BSGS data sets a–d. Associated cis and trans
variants were extracted at multiple FDR thresholds (Table
1). The results demonstrated a much higher number of both
cis- and trans-eQTL detected within the data set corrected
with linear models (b) as opposed to PC-corrected data sets
(c and d). PC correction, however, enhanced eQTL detection
when compared to noncorrected data sets (a), likely reflect-
ing a removal of false positives caused by batch effects. The
improved removal of batch effects in the PC50 (d) vs. PC25
(c) corrected data set (Figure 1 and Figure 2) is also
reflected by an increased number of cis- and trans-eQTL in

Figure 2 Batch effect associa-
tions to PCs. Significant values
are highlighted in red and are
obtained from an F-test on the
linear regression models. (A) R2

from a regression analysis of
each PC on batch, sex, and age
effects in a data set that is not
corrected for any of those fac-
tors. (B) R2 from a regression
analysis of each PC on the batch,
sex, and age effects in a data set
that is corrected for these factors.
There is no significant association
to batch effects present. (C) As-
sociation to batch effects in
a data set corrected for the first
25 PCs. (D) Association to batch
effects in a data set corrected for
the first 50 PCs.
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data set d. These same trends were also observed in our
replication sample (CHDWB) (Table 1). The results from
these eQTL studies indicate that the PC correction method
negatively affects the number of eQTL that can be detected
within gene expression data sets.

To investigate loci driving genetic variation captured
within PCs generated from data set a, we performed
a genome-wide association study for each PC. The PCs were
tested for association with 488,462 genotyped SNPs, using
linear models implemented in PLINK software (Purcell et al.
2007). At a study-wide significance level determined by
Bonferroni correction (0.05/(488,462 SNPs 3 335 PCs) =
3e210), no significant SNPs were found. We next examined
the top SNPs that were significant after Bonferroni correc-
tion on each PC (0.05/448,462 = 1.0e27). There were 23
SNPs that were significant at this threshold and these were
confirmed with 1000 permutations (Figure S5 and Table
S1). The lack of genome-wide significant associations could
be attributed to the study not having enough power due to
a small sample size (Park et al. 2010). Another explanation
is that the genetic variance attributed to PCs is highly poly-
genic. As multiple probes are driving each PC (Figure S2B),
the magnitude of different signals can prevent the detection
of individual SNP effects.

Biological pathway analysis

We next sought to evaluate whether the first 50 PCs
generated from data set a contained linear combinations
of genes involved in an expression pathway. Pathway
analysis was performed using the DAVID Bioinformatics
Resources 6.7, Functional Annotation Tool (Da Wei Huang
and Lempicki 2008) on the first 50 PCs (Figure S6 and Table
S2). For numerous PCs we are able to demonstrate signifi-
cant enrichment for multiple different KEGG pathways
(FDR = 0.05).

Immune function was the most common process with
PC3, PC12, PC24, PC25, and PC26 all showing significant
enrichment for immune functional pathways. PC3 showed
enrichment for Fc-gamma R-mediated phagocytosis (P =
5.4e23). PC12 showed enrichment for hematopoietic cell
lineage (P = 2e23), B-cell receptor signaling (P = 3.8e22),
graft-vs.-host disease (P = 4.4e22), non-small-cell lung can-
cer (P = 4e22), and asthma (P = 4.4e22). PC24 and PC25
were also enriched for B-cell receptor signaling (P = 2.7e25

and P = 1.6e22, respectively) and PC26 showed enrichment
for primary immunodeficiency (P = 1.2e22).

Metabolic processes were enriched in PC8, PC13, and
PC32. Enrichment for oxidative phosphorylation was found
in PC8, PC13, and PC32 (P = 4e25, P = 5.6e23, and P =
3.7e22). PC8 also showed enrichment for genes known to be
involved in susceptibility to Parkinson’s (P = 3e23), Alz-
heimer’s (P = 3e23), and Huntington’s disease (P = 9e25)
and proteasomal components involved in peptide processing
(P = 4e25). These brain conditions have been linked to
oxidative metabolic dysfunction, due to oxidative damage
to neurons (Browne et al. 1997; Mecocci et al. 2004; Rhein
et al. 2009) and neuronal energy deficiency (Hoyer 1992)
and also improper peptide processing that leads to the
buildup of amyloid plaques (Jonsson et al. 2012).

Enrichments for ribosomal components were found in
PC1, PC13, and PC18 (P = 4.5e25, P = 2.4e22, and P =
1e24). PC13 also showed enrichment for RNA degradation

Figure 4 Distribution of heritability estimates for 9086 probes from four
different correction methods. Black, standard normalized; red, standard
normalization with linear model correction for batch effects; blue, cor-
rected for batch effects using the first 25 PCs; purple, corrected for batch
effects using the first 50 PCs. There is a drop in heritability using the
correction methods; however this is more pronounced in the PC corrected
data set. The heritability estimates are constrained to zero due to the
nature of genetic variance component estimating in QTDT.

Figure 3 Heritability estimates. Narrow-sense heritability estimates of
each PC obtained from QTDT. These results indicate that nearly all PCs
hold genetic information.
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processes (P = 1.8e23). PC7 was enriched for porphyrin
metabolism (P = 2e22) involved in heme biosynthesis.

Of the 11 PCs that showed a significant enrichment (1, 3,
7, 8, 12, 13, 18, 24, 25, 26, and 32), most of them also
demonstrated relatively high heritability estimates (0.4, 0.4,
0.58, 0.49, 0.4, 0.45, 0.37, 0.39, 0.57, 0.37, and 0.49,
respectively), with an average heritability of 0.45. These
results together demonstrate that biologically relevant and
interesting probe enrichments are present within the first 50
PCs despite the high association with batch effects within
the data set.

Discussion

The removal of genetic variation alongside batch effects
when using PC correction has been alluded to but never
formally investigated in several articles (Stegle et al. 2010;
Fehrmann et al. 2011; Brown et al. 2012; Fu et al. 2012).
Due to the unique study design of the BSGS, which contains
both unrelated and family information, we are able to quan-
tify the genetic components driving each PC with two in-
dependent approaches: SNP association analysis and
heritability estimates. From this, we have demonstrated that
all PCs obtained from the decomposition of a gene expres-
sion data set contain relevant genetic information. Most im-
portantly, we show that the first 50 PCs, which have been
removed in previously published articles to correct for batch
effects (Leek and Storey 2007; Stegle et al. 2008; Leek et al.
2010; Fehrmann et al. 2011; Fu et al. 2012; Qin et al. 2012;
Stranger et al. 2012), contain both a considerable proportion
of genetic variation influencing gene expression (Figure 3)
and an enrichment for biological networks. The considerable
genetic variation found within the initial PCs cautions
against the removal of such components in the data set
due to the potential loss of genetic information.

We also show that batch effects are distributed across the
first 59 PCs with varying effect sizes. As these initial PCs
contain a combination of both genetic and batch effects,
there appears to be a trade-off between removing batch effects
and removing biologically relevant data when employing
PC correction. Removing a higher number of PCs improves
batch effect correction while at the same time increasing
the amount of genetic variation that is removed (Figure 4
and Table 1) and the removal of a smaller number of PCs
(as in some studies, e.g., Pickrell et al. 2010) can lead to
the incomplete removal of batch effects. While the exact
proportions of genetic and batch effect variance observed
in the PCs here are unique to this data set, similar patterns
of variance distributions are expected to be present in other
high-throughput expression data sets.

PC correction became prevalent in gene expression
studies after being used to correct for expression heteroge-
neity by a method called surrogate variable analysis (SVA)
(Leek and Storey 2007). This method corrects for noise in
the data set that is not accounted for by the primary variable
of interest, which may be different experimental conditions
or genes. It has been demonstrated as an effective means of
enhancing the genetic signals of interest and minimizing
false discovery rates. One key difference between SVA and
PCA correction is that the principal components were gen-
erated on the residuals of the data that were corrected for
the primary variable of interest. These principal components
contain residual “noise” within the data set and their sub-
sequent removal enhanced the power to detect signals asso-
ciated with the primary variable. Later studies removed
principal components from the whole data set without for-
mer corrections for variables of interest (Stegle et al. 2008;
Pickrell et al. 2010; Fehrmann et al. 2011; Fu et al. 2012).
We have demonstrated here that this can remove genetically
driven variation within the gene expression data set that

Table 1 eQTL results for datasets a–d

BSGS

No correction, data set a PC 25 correction, dataset c PC 50 correction, dataset d Linear model correction, dataset b

FDR Cis Trans Cis Trans Cis Trans Cis trans

0.2 1586 8056 1676 9085 1707 9085 2824 9085
0.1 840 2144 929 2530 1149 2564 1914 3025
0.05 596 170 650 254 806 301 1746 490
0.01 449 99 502 137 737 169 1199 264
0.001 349 75 402 104 640 114 1005 218
0.0001 273 56 316 88 510 91 848 183

CHDWB
0.2 743 8102 815 8234 909 8695 1164 8841
0.1 513 1249 597 1471 684 1538 822 2076
0.05 345 90 373 98 457 152 627 388
0.01 189 51 252 46 366 120 594 215
0.001 143 22 207 31 295 86 470 136
0.0001 101 9 168 15 183 27 385 141

Cis regions were defined as 61 Mb either side of the transcription start site. Trans was defined as elsewhere in the genome. The numbers of probes with a cis or trans
association significant at various study-wide FDR thresholds is provided for each of the four correction methods
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could be of interest to the researcher, due to the ability of
PCs to pick up multiple sources of variation (Stegle et al.
2010; Qin et al. 2012).

As the PCs pick up linear combinations of factors in the
data set, they also have the power to detect gene regulatory
networks and coexpressed modules (Holter et al. 2000).
Gene regulatory networks have a considerable impact on
disease as opposed to single-gene changes (Chen et al.
2008), as groups of genes are known to interact and respond
to environmental perturbations together (Ihmels et al.
2003). These networks are made of coexpressed gene mod-
ules that are robust to environmental changes and even
different microarray platforms (Chaussabel et al. 2008).
Principal components have been used to quantify regulatory
SNPs governing metabolic networks in both yeast (Biswas
et al. 2008) and human data (Abo et al. 2012). We observed
in our data set that there was enrichment for biological net-
works within the initial PCs. These were dominated by im-
mune function processes, which have been detected
previously with clustering analysis of gene expression data
(Chaussabel et al. 2008) as well as of metabolic, ribosomal,
protein, and heme biosynthesis pathways. As these PCs also
demonstrate a high heritability, this indicates that a consider-
able proportion of the variance in these PCs is being
explained by biological factors. The removal of such PCs to
compensate for batch effects would have led to the removal
of this interesting information. It has also been demon-
strated previously that PC correction also removes a large
proportion of covariance in a data set, which could consti-
tute these gene networks and interactions (Qin et al. 2012).

Our results show that PC correction negatively affects
both average probe heritability (Figure 4) and the number
of eQTL hits detected (Table 1). While the removal of
a larger number of PCs improved batch effect correction
(Figure 1) and increased the number of eQTL detected in
the data set (Table 1), it had a much larger impact on mean
probe heritability. This genetic variation could be composed
of additional factors such as genetic covariance contributing
to gene networks that may not necessarily be found in an
eQTL study. Linear model correction, on the other hand,
demonstrated superior eQTL detection and retained a much
higher probe average heritability. Therefore, if recorded pro-
cessing dates are present, these values can be used to correct
for batch effects in the data by incorporating them as cova-
riates in a linear model (Li and Rabinovic 2007). This not
only increases eQTL detection by increasing power and re-
ducing false positives (Stegle et al. 2008) but also ensures
that, unlike PC correction, large amounts genetic variance
are not removed (Figure 4). Strong associations with PCs
explaining large proportions of variance in a data set can be
used to select for appropriate batch effects to model within
a data set if a large number of different factors have been
recorded (Parts et al. 2012). We demonstrate here that lin-
ear model correction also has the advantage over PC correc-
tion in that it is more effective in correcting for known batch
effects (Figure 2).

We demonstrate that the removal of PCs from gene
expression data sets to correct for batch and environmental
effects should be treated with caution, as many different
sources of variation can be present within them. This comes
from the ability of PCs to detect many linear combinations of
trait values (Yeung and Ruzzo 2001). As it can be difficult to
distinguish between which factors are driving the PCs with-
out prior knowledge of the batch and environmental trends
in the data set, removal of PCs runs the risk of removing
biologically interesting data. However, removal of the first
50 PCs can sometimes provide a good method to account for
technical artifacts that can lead to spurious associations
when no batch effects have been recorded. Our results here
show that it is clearly preferable to record such information
during the generation of the data and correct for it using
standard linear approaches (Scherer 2009).

The data used in this study are available to potential
researchers through the Consortium for Genetic Architec-
ture of Gene Expression (CAGE). Should individuals wish to
obtain a copy of the data they can apply with a research
proposal for membership to CAGE. Applications can be
made by e-mailing Peter Visscher (peter.visscher@uq.edu.
au) or Joseph Powell (joseph.powell@uq.edu.au).
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Figure S1   Scores plots of PCs against their adjacent vectors. Demonstrates a homogenous population with no clear 

substructure or independent clustering of groups of individuals. 
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Figure S2   Selection of probes driving PCs. (S2A) Maximum (blue) and minimum (black) eigenvector values for each PC. The 

eigenvector values represent the extent of the correlation between a probe and a PC, with 0 indicating no association. 

Selection of probes driving each PC is based on the optimal number of probes for each PC that have the same eigenvector 

value cut off. As multiple probes can contribute a small amount of variance to each PC it is reasonable that a low cut off 

value can pick up many of the significant probes driving each PC. Probes that have an eigenvector value of greater than 

0.02 or less than -0.02 were selected for further biological enrichment analysis as this incorporated all the maximally and 

minimally expressed probes in this section. (S2B) Selection of probes at this cut off value enabled approximately similar 

numbers of probes to be selected for each PC. The slightly lower number of probes that are selected in the initial PCs is due 

to the lower maximum and minimum eigenvector values in these PCs as shown in (S2A). 
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Figure S3   Variance explained by PCs. Calculated from the eigenvalues obtained from the Singular Value Decomposition. 

Variance explained by each PC is plotted in black and cumulative variance in blue.  A) Normalized dataset, B) Corrected 

with linear models, C) PC25 corrected D) PC50 corrected. All variances add up to 1. Cum 
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Figure S4   Correlation between additive genetic and common environmental factors. Significant association (p = 8.57e-08 

and R2=0.08) between the common environment and genetic components estimated in an AC and AE models. The 

proportion of common environment variance was calculated by dividing the variance attributed to common environment 

(Vc) by the total phenotypic variance (Vp). The proportion of genetic variability (heritability) was calculated by dividing the 

additive genetic component (Vg) by the total phenotypic variance (Vp). This result indicates that the heritability estimates 

obtained are confounded with common environment variance and therefore inflated upwards by common family effects.   
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Figure S5   Manhattan and QQ plots. Manhattan and QQ plots for each PC with a significant SNP associated in Table S1. The 

significance value cut-off is drawn as a red line drawn on the Manhattan plots and is based on the Bonferroni correction for 

each PC. The QQ plot shows the expected p-values vs. the observed p-values in the study and the lambda value gives a 

numerical estimation of any inflation in the statistics. 
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Figure S6   Pathway diagrams of enriched biological networks. Figures generated from the KEGG pathway database. 

Pathway analysis for PC1-50 was performed using DAVID Bioinformatics Resources 6.7, Functional Annotation Tool. These 

pathways were significant after multiple correction (FDR) (Table S2). Components highlighted with red stars represent 

probes present within the corresponding PC.  PC1 shows enrichment for ribosomal components. PC3 is enriched for Fc 

gamma R-mediated phagocytosis. PC7 is enriched for porphyrin metabolism. PC8 shows enrichment for enzymatic subunits 

involved oxidative phosphorylation, PC12 is enriched in components involved in the B-cell receptor signaling pathway and 

hematopoietic cell lineage. PC13 is enriched for RNA degradation. PC18 shows enrichment for ribosomal components and 

PC25 shows enrichment for B-cell reception signaling. 

 

  



A. Goldinger et al. 26 SI 

Table S1   Results from the GWAS for each PC. Probes that were found to be significant after a Bonferroni correction 

(0.05/488,462 SNPs) on each PC are listed in this table. Though none of these are significant after correcting for all PCs, 

they are significant at an empirical p-value of 0.05 for each PC after 1000 permutations. PC – principal component, CHR – 

chromosome, SNP – SNP ID, BP – base pair, BETA – regression coefficient, STAT – Coefficient T-statistic, P – Asymptotic p-

value for t-statistic, EMP – empirical p-value after 1000 permutations. 

PC CHR SNP BP BETA STAT P EMP 

22 10 rs11004899 56960734 3.754 5.487 8.14E-08 0.036 

35 2 rs1516174 51724845 2.826 5.43 1.089E-07 0.049 

81 16 rs9673242 14078070 -3.404 -5.524 6.69E-08 0.021 

81 16 rs1004637 14113245 -3.404 -5.524 6.69E-08 0.021 

100 16 rs7190803 77375823 -1.444 -5.535 6.33E-08 0.021 

106 2 rs10497190 158347486 -1.741 -5.585 4.87E-08 0.021 

106 13 rs17072974 21351926 2.275 5.501 7.53E-08 0.027 

106 13 rs12428031 21355249 2.275 5.501 7.53E-08 0.027 

110 11 rs10501384 59950456 2.555 5.482 8.31E-08 0.033 

110 11 rs17542525 59958103 2.555 5.482 8.31E-08 0.033 

119 8 rs4596672 88124581 -1.641 -5.488 8.23E-08 0.032 

119 8 rs2974279 88144159 -1.385 -5.517 6.95E-08 0.028 

156 1 rs825113 221564768 1.762 5.503 7.45E-08 0.026 

157 2 rs11674634 132055980 -1.305 -6.005 5.02E-09 0.004 

175 4 rs6848983 298010 1.736 5.71 2.50E-08 0.005 

214 5 rs1279627 55966337 -1.095 -5.562 5.50E-08 0.019 

225 10 rs7919814 109720733 -1.055 -5.502 7.52E-08 0.03 

245 8 rs17128272 19257994 -1.516 -5.449 9.85E-08 0.042 

323 9 rs10813262 30474037 1.542 5.538 6.22E-08 0.044 

323 9 rs4878432 30490252 1.542 5.538 6.22E-08 0.044 

323 9 rs7866981 30548222 1.568 5.639 3.65E-08 0.034 

324 14 rs10498517 64832534 1.619 6.112 2.74E-09 0.002 

324 14 rs4902382 64834310 1.44 5.662 3.24E-08 0.017 
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Table S2   Pathway analysis for the first 50 PCs Pathway analysis for PC1-50 was performed using DAVID Bioinformatics 

Resources 6.7, Functional Annotation Tool. PC – principal component, Term – name of KEGG pathway, Count – count of 

probes in each hit, % – percentage of all probes submitted for that PC that are present within the pathway, P – the p-value 

that is calculated using a modified Fischer’s exact test for enrichment, FDR – correction of p-values and using the 

Benjamini-Hochberg FDR method. 

PC Term Count % P FDR 

1 Ribosome 8 7.9 1.00E-06 4.50E-05 

3 
Fc gamma R-mediated 

phagocytosis 
14 2.7 4.30E-05 5.40E-03 

7 Porphyrin metabolism 7 1.5 1.60E-04 2.00E-02 

8 

Proteasome 12 2.6 2.70E-07 4.00E-05 

Oxidative phosphorylation 18 3.9 1.20E-06 8.70E-05 

Huntington's disease 21 4.6 1.90E-06 9.00E-05 

Parkinson's disease 15 3.3 8.50E-05 3.10E-03 

Alzheimer's disease 15 3.3 1.10E-03 3.00E-02 

12 

Hematopoietic cell lineage 13 2.5 1.40E-05 2.00E-03 

B cell receptor signaling 

pathway 
10 1.9 5.60E-04 3.80E-02 

Antigen processing and 

presentation 
10 1.9 1.20E-03 5.30E-02 

Graft-versus-host disease 7 1.3 1.30E-03 4.40E-02 

Non-small cell lung cancer 8 1.5 1.50E-03 4.00E-02 

Asthma 6 1.2 2.00E-03 4.40E-02 

13 

RNA degradation 11 2.3 1.30E-05 1.80E-03 

Oxidative phosphorylation 15 3.1 7.80E-05 5.60E-03 

Ribosome 11 2.3 5.00E-04 2.40E-02 

18 Ribosome 14 2.9 9.40E-07 1.00E-04 
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24 
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25 
B cell receptor signaling 

pathway 
11 2.2 1.10E-04 1.60E-02 

26 Primary immunodeficiency 8 1.7 7.90E-05 1.20E-02 

32 Oxidative phosphorylation 13 2.7 2.90E-04 3.70E-02 

 

 


