
Genetic Epidemiology 32 : 513–519 (2008)

Calculation of IBD Probabilities with Dense SNP or Sequence Data
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The probabilities that two individuals share 0, 1, or 2 alleles identical by descent (IBD) at a given genotyped marker locus
are quantities of fundamental importance for disease gene and quantitative trait mapping and in family-based tests of
association. Until recently, genotyped markers were sufficiently sparse that founder haplotypes could be modelled as
having been drawn from a population in linkage equilibrium for the purpose of estimating IBD probabilities. However, with
the advent of high-throughput single nucleotide polymorphism genotyping assays, this is no longer a reasonable
assumption. Indeed, the imminent arrival of individual sequencing will enable high-density single nucleotide
polymorphism genotyping on a scale for which current algorithms are not equipped. In this paper, we present a simple
new model in which founder haplotypes are modelled as a Markov chain. Another important innovation is that genotyping
errors are explicitly incorporated into the model. We compare results obtained using the new model to those obtained using
the popular genetic linkage analysis package Merlin, with and without using the cluster model of linkage disequilibrium
that is incorporated into that program. We find that the new model results in accuracy approaching that of Merlin with
haplotype blocks, but achieves this with orders of magnitude faster run times. Moreover, the new algorithm scales linearly
with number of markers, irrespective of density, whereas Merlin scales supralinearly. We also confirm a previous finding
that ignoring linkage disequilibrium in founder haplotypes can cause errors in the calculation of IBD probabilities. Genet.
Epidemiol. 32:513–519, 2008. r 2008 Wiley-Liss, Inc.
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INTRODUCTION

A wide range of strategies for mapping disease genes
and quantitative trait genes involve estimating probabil-
ities that a pair of related individuals share 0, 1, or 2 alleles
identical by descent (IBD) at a point along a chromosome.
For example, the affected sib-pair method [Cudworth and
Woodrow, 1975; Motro and Thomson, 1985] involves
investigating whether the proportion of affected sib pairs
sharing 0, 1, or 2 alleles IBD at a marker locus differs
significantly from expectations, assuming a null model in
which there is no linkage between the marker and the
disease. Standard parametric and non-parametric tests for
linkage also involve estimating IBD probabilities [Kong
and Cox, 1997; Krugylak et al., 1996; Whittemore and
Halpern, 1994]. IBD probabilities are also required for
certain family-based tests of linkage disequilibrium (LD),
such as those implemented in the QTDT package
[Abecasis et al., 2000a,b].

A number of methods for estimating IBD probabilities
have been developed. The Elston-Stewart algorithm
[Elston and Stewart, 1971; Lange and Elston, 1975], as
implemented in the VITESSE software package [O’Con-
nell, 2001; O’Connell and Weeks, 1995], is appropriate for
large pedigrees, but is only feasible for a small number of
markers. The leading method when the number of marker

loci is large is the Lander-Green algorithm [Krugylak et al.,
1995, 1996; Lander and Green, 1987]. Importantly for large
numbers of loci, the Lander-Green algorithm has time and
memory requirements proportional to the number of loci.
Markov chain Monte Carlo methods suitable for small or
large pedigrees have also been developed [Heath, 1997;
Liu et al., 2007; Wijsman et al., 2006]. However, these are
not suitable for dense marker data and, in particular, do
not take into account marker-marker LD. The state-of-the-
art software for evaluating IBD probabilities in small-to-
medium size pedigrees is the popular Merlin package
[Abecasis et al., 2002], which includes a highly efficient
implementation of the Lander-Green algorithm. An
assumption implicit in straightforward implementations
of the Lander-Green algorithm, including the original
implementation in Merlin, is that parental haplotypes are
drawn from a population in linkage equilibrium. In other
words, the allele occurring at any given locus in the
haplotype is assumed to be independent of the alleles
occurring at all other loci. However, Merlin has recently
been modified to allow for LD between markers in
founder haplotype population [Abecasis and Wigginton,
2005]. The modification involves identifying clusters of
markers that represent haplotype blocks and estimating
the population frequencies of each haplotype in each
cluster. This is an important development, since informa-
tion about parental haplotypes can be very helpful in
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resolving uncertainties about the number of IBD alleles at
each locus. Moreover, ignoring LD can create bias in IBD
estimation when parental genotypes are unobserved
[Schaid et al., 2002].

The current move towards denser linkage maps entails
that LD between adjacent markers is also increasing.
Moreover, large numbers of individual genome sequences
will soon be available. The first individual genome has
been sequenced [Levy et al., 2007] and an international
collaboration known as the 1,000 genome project, which
aims to sequence 1,000 individual genomes, has been
launched [Hayden, 2008; Qiu and Hayden, 2008]. Conse-
quently, extremely dense marker data at a very large
number of loci will soon be available. Although individual
sequencing will produce essentially the same type of
data—single nucleotide polymorphism (SNP) genotypes—
two new problems will arise. The first is the sheer scale of
data that will be produced—millions of SNPs for thou-
sands of individuals. The second is the increased density,
and hence the increasing importance of marker-marker
LD. Efficient algorithms that account for marker-marker
LD will thus become essential.

The algorithm implemented in Merlin involves identify-
ing clusters of markers that represent haplotype blocks
and estimating the population frequency of each haplo-
type in each cluster. However, the method has a number of
drawbacks:

(i) it relies on knowing or estimating a large number of
population parameters,

(ii) it assumes no recombination within a cluster and no
LD between clusters, and

(iii) it scales supralinearly in run time and memory
requirements with respect to the number of markers,
and thus does not scale up to whole-genome, dense-
marker data.

Here, we describe a new model and method for
estimating IBD probabilities that addresses these three
drawbacks, by incorporating a Markov model for the
founder haplotypes. In particular, the computation time
and memory requirements scale linearly with the number
of markers, and recombination and LD between any pair
of adjacent markers are permitted. An additional advan-
tage of the new model is that it allows for and detects
likely genotyping errors. We present results using real and
simulated data to demonstrate the improved speed and
accuracy of the new method compared to Merlin. Our
results also confirm that accounting for LD can substan-
tially improve the estimation of IBD probabilities.

Source code (written in C) implementing the new
method is available from the contact website: http://
www.maths.qut.edu.au/�keithj/.

MATERIALS AND METHODS

THE MODEL

Figure 1 illustrates the various parameters of the model
and their conditional dependencies. The given data
consists of observed genotypes, which we group together
into two vectors, G and G0. These are shown at the bottom
of Figure 1, and represent observed genotypes for
founders and non-founders, respectively. The components
of G are written as Gij, representing the observed genotype

for founder i at locus j, and similarly for the non-founders.
We assume that all markers are biallelic SNPs with alleles
labelled ‘‘0’’ and ‘‘1,’’ and we denote genotypes ‘‘0,’’ ‘‘1,’’
and ‘‘2’’ representing ‘‘00,’’ ‘‘01,’’ and ‘‘11’’ pairs, respec-
tively. Some of the observed non-founder genotypes, and
some or all of the observed founder genotypes, may be
missing; these are denoted by ‘‘-.’’

Although Figure 1 does not show it, all computations
are conditional on the pedigree structure. Throughout this
paper, for the sake of simplicity, the data consist of nuclear
families with two offspring. However, the algorithm is
readily generalized for larger pedigrees.

In this section, we assume that IBD probabilities are to be
calculated for a single pair of individuals, which may be
founders, non-founders, or one of each. Let the number of
alleles shared IBD between these two individuals at marker j
be nj, which may be 0, 1, or 2 and let n 5 (n1,y,nJ), where J is
the number of markers. The problem is to estimate the
probability of each possible value of nj, for j 5 1,y,J, given
G and G0. These probabilities are denoted p(nj|G, G0).

The values nj are completely determined at each locus
by the inheritance vectors, which we collect into a single
vector Z. The inheritance vector has binary components
Zii0j for each parent-child pair (i,i0) in the pedigree and for
each marker locus j. Each component indicates which copy
of the chromosome child i’ inherited from parent i at locus
j, where ‘‘0’’ indicates the chromosome inherited from the
father of i and ‘‘1’’ indicates the chromosome inherited
from the mother of i. The arrow from Z to n in Figure 1
indicates that n depends on Z.

By tracing back the sequence of inheritance events implied
by a given inheritance vector, one can determine which two
founder chromosomes were inherited by each individual in
the pedigree at each marker. Thus, if the founder haplotypes
and the inheritance vector were known, all founder and non-
founder genotypes would be completely determined. Let H
be the vector of founder haplotypes with components Hkj

representing the allele at locus j of founder haplotype k,

Fig. 1. The parameters of the model and their conditional

dependencies. The parameter at the head of each arrow is
conditionally dependent on the parameter at the tail. From the

bottom up, G and G0 are the observed genotypes of founders

and non-founders, respectively. These depend on the true

founder and non-founder genotypes F and F0, and on the
parameters of the error model a. Founder genotypes depend on

the founder haplotypes H, whereas non-founder genotypes

depend on both H and the inheritance vector Z. The number of

alleles n shared at a locus by two relatives is a function of the
inheritance vector. Founder haplotypes are here modelled as

products of a Markov process with parameters Q and inheri-

tance vectors result from independent random recombinations
with the probabilities of recombinations between adjacent

markers collected as vector c.
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where the number of founder haplotypes is twice the
number of founders. Each Hkj may therefore be either ‘‘0’’ or
‘‘1.’’ In Figure 1, the true founder and non-founder genotypes
are denoted F and F0, respectively. These vectors have
components of the form Fij and Fij

0, representing the true
genotypes of each individual i and locus j. Note that in
Figure 1 the founder genotypes F depend only on H, not on
Z, whereas the non-founder genotypes F0 depend on both H
and Z.

The observed founder genotypes Gij may differ from the
true founder genotypes Fij, and similarly for the observed
and true non-founder genotypes. We employ a two-
parameter error model relating observed genotypes to
true genotypes. The model involves the transition matrix
shown in Figure 2, which has parameter vector a ¼ ða0; a1Þ.
The entry in row i and column j is the probability that a
true genotype i will be measured as genotype j, for
i,j 5 0,1,2. Thus, Figure 1 indicates that the observed
genotypes G and G0 are dependent on the true genotypes
F and F0 and on the parameter vector a. In this paper, we
use a0 ¼ a1 ¼ 0:001: Note that in Figure 1, the observed
founder genotypes G and non-founder genotypes G0 are
dependent on the same error parameter vector a. This does
not imply that the location of errors in G is in any way
correlated with the location of errors in G0. Rather, it
merely indicates that the same genotyping technique has
been used for all individuals, whether founder or non-
founder, and hence the probability of any particular type
of error (such as misreading 01 as 00) is the same for all
individuals.

According to our model, the inheritance vector Z is
dependent upon the vector c of recombination probabil-
ities between adjacent markers, as indicated in Figure 1.
We assume that the probability of an odd number of
crossing-over events occurring between markers j and j11
is independent of whether recombination occurs anywhere
else. That is, we assume that there is no crossing-over
interference. Let this probability be cj, and let
c ¼ ðc1; . . . ; cJ�1Þ. Various ways of estimating c are possible,
but in this paper recombination frequencies are estimated
using genomic positions. Specifically, for the human
chromosomes that we consider in this paper—7 and 15—
the ratio of map length to physical length was calculated
using published measurements [Kong et al., 2004] and
then Haldane’s mapping function (c 5 0.5[1�exp[�2d/
100]]) was used to estimate the probability of recombina-
tion.

Finally, the remaining part of the model specifies how
the founder haplotypes H are distributed, and it is here
that we introduce a Markov chain to model LD in the
founder haplotype population. The model assumes that
the allele at the first (i.e. leftmost) locus is ‘‘1’’ with
probability q, but that the probability of a ‘‘1’’ allele at the
second locus depends on which allele was selected at the
first locus, and similarly the probability of a ‘‘1’’ allele at
locus j depends on which allele was selected at locus j�1,

for j42. Let the probability of a ‘‘1’’ allele at locus jZ2 be
Qj0 if a ‘‘0’’ allele was selected at locus j�1 and Qj1 if a ‘‘1’’
allele was selected. Let Q ¼ ðq;Q20;Q21; . . . ;QJ0;QJ1Þ. The
value of Q we estimate using genotype data, as described
in the following subsection.

In summary, the data in Figure 1 consist of observed
genotypes G and G0. The parameters Q, c, and a are
estimated directly from the data. The unknowns are H, Z,
F, F0, and n and we want to determine p(nj|G, G0) for nj 5 0,
1, or 2 and j 5 1,y,J.

We can expand p(nj|G, G0) as follows:

pðnjjG;G
0Þ ¼

pðnj;G;G0Þ

pðG;G0Þ

¼
1

pðG;G0Þ

X

H;Z

½pðHjQÞpðZjcÞpðGjFðHÞ; aÞ

� pðG0jF0ðH;ZÞ; aÞpðnjjZÞ�;

where F is written as F(H) and F0 is written as F0(H,Z) to
indicate that H and Z completely determine F and F0. The
term p(nj|Z) is 1 or 0, depending on whether nj is
compatible or incompatible with the components of the
inheritance vector at locus j. The term p(G|F(H),a) can be
expanded as follows:

pðGjFðHÞ; aÞ ¼
Y

i;j

pðGijjFijðHijÞ; aÞ;

where terms on the right-hand side are obtained from the
matrix shown in Figure 2. The expression p(G0|F0(H,Z),a)
can be similarly expanded. The term p(Z|c) can be
expanded as

pðZjcÞ ¼
Y

ði;i0Þ

pðZii01Þ
YJ

j¼2

pðZii0jjZii0ðj�1Þ; cj�1Þ;

where the first product is over all parent-child pairs (i,i’),
pðZii0jÞ is 0.5 and pðZii0jjZii0ðj�1Þ; cj�1Þ is ð1� cj�1Þ if Zii0j ¼

Zii0ðj�1Þ and cj�1 otherwise.

The main novelty of our method is that we expand
p(H|Q) in terms of our Markov model as follows:

pðHjQÞ ¼
Y

k

pðHk1Þ
YJ

j¼2

pðHkjjHkðj�1Þ;Qj0;Qj1Þ;

where pðHk1Þ is 1�q or q according to whether Hk1 is 0 or 1
and pðHkjjHkðj�1Þ;Qj0;Qj1Þ is 1�Qj0; Qj0; 1�Qj1, or Qj1,
according to whether ðHkðj�1Þ; HkjÞ is (0,0), (0,1), (1,0), or
(1,1), respectively.

The summations over H and Z are efficiently computed
via dynamic programming. Note that the Lander-Green
algorithm is also essentially just dynamic programming.

ESTIMATING TRANSITION
PROBABILITIES

To estimate the transition probabilities Qj0 and Qj1 for
each locus j, we used the genotype data supplied as input.
Consequently, the larger the number of individuals
genotyped, the more accurate the estimates will be. Let
the covariance of the haplotypes at locus j�1 and j be
covðHj�1;HjÞ where the haplotypes are encoded as ‘‘0’’ or
‘‘1.’’ Similarly, let the covariance of the genotypes at locus
j�1 and j be covðGj�1;GjÞwhere the haplotypes are encoded

Fig. 2. Transition matrix for the error model. The entry in row i
and column j is the probability that genotype i will be observed

as genotype j.
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as ‘‘0,’’ ‘‘1,’’ or ‘‘2.’’ A straightforward argument (see the
Appendix) shows that covðHj�1;HjÞ ¼ 0:5 covðGj�1;GjÞ. The
right-hand side can be estimated using the sample
covariance of the genotypes, giving an estimate also of
covðHj�1;HjÞ. The proportion of the ‘‘1’’ allele at loci j and
j�1 can also be estimated directly from the data. Let the
proportion of the ‘‘1’’ allele at locus j be qj. Then another
straightforward argument (see the Appendix) gives that

Qj0 ¼ qj �
covðHj�1;HjÞ

1� qj�1

and

Qj1 ¼ qj þ
covðHj�1;HjÞ

qj�1
:

An important refinement of this method is to recognize that

maxf�qj�1qj;�ð1� qj�1Þð1� qjÞg

� covðHj�1;HjÞ

� minfð1� qj�1Þqj; qj�1ð1� qjÞg:

If either the upper or lower of these limits is violated, then
we set the covariance equal to that limit.

RESULTS

The new model was applied to three data sets. The first
involved real parental haplotypes obtained from the
HapMap project and used to simulate siblings with known
IBD sharing at each locus. The second was a very large
simulated data set involving 1,000 parental haplotypes and
more than one million markers. This approaches the scale
of SNP data that will arise from individual sequencing
projects. The third was based on twin-study data supplied
by the Queensland Institute of Medical Research.

DATA SET 1—SIMULATED SIBLING
GENOTYPES

The raw data from which sibling genotypes were
simulated were obtained from the International HapMap
Project [Gibbs et al., 2005] and were downloaded from the
project website: http://www.hapmap.org/. The data
consisted of phased haplotypes obtained for 60 Utah
residents with ancestry from northern and western

Europe. We used data from chromosome 7 only, consisting
of 144351 SNPs. The haplotypes represent the inherited
and non-inherited alleles of a single offspring for each of
30 pairs of parents.

We simulated meioses resulting in two offspring for
each of the 30 pairs of parents. The probability of
recombination occurring between any pair of adjacent
markers was set in accordance with the distance between
SNPs, using the approximation 1 MbE1.2 cM and Hal-
dane’s mapping function. The resulting data set consisted
of genotype data for 30 sibling pairs, plus known IBD
status for each pair and each SNP.

The new algorithm was then run on the full set of 30
sibling pairs. The Merlin package was also run on the same
data, with and without accounting for LD using clusters.
Run times were �4 min for MCIBD, �7 min for Merlin
without clusters, and �4 hr for Merlin with clusters.

To compare the performances of the three algorithms,
we first considered only those loci that were known to
have 0 alleles shared IBD. For each such locus, we
considered the probability of 0 alleles shared IBD as
estimated by each algorithm. The cumulative distributions
of these probabilities for each algorithm are shown in
Figure 3(A). An ideal algorithm would assign probability 1
to all loci with a true IBD status of 0, and thus the
cumulative distribution of probabilities would spike at
probability 1. Thus, it would appear that our algorithm is
performing better than Merlin does without accounting for
LD using clusters, but not as well as Merlin does using
clusters. Figure 3(B) shows a similar analysis for all loci
with a true IBD status of 1. The same conclusion can be
drawn. The analysis was also performed for all loci with a
true IBD status of 2, but in this case all three algorithms
were close to the ideal distribution, that is, all three
algorithms assigned a high probability of IBD status 2 to
almost all such loci.

DATA SET II—SIMULATED INDIVIDUAL
SEQUENCING

In order to investigate whether the algorithms would be
able to handle SNP genotype data on the scale that is
expected from individual sequencing projects, we simu-
lated a population of 2,000 chromosomes using the
computer program ms [Hudson, 2002]. We assumed an
effective diploid population size of 10,000, a neutral
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Fig. 3. Cumulative distributions of estimated probabilities of IBD status (A) 0 and (B) 1, for simulated data at loci known to have IBD

status 0 (1), using our new algorithm (MCIBD), merlin without clusters, and merlin with clusters. The cumulative proportion is the

proportion of loci with true IBD status 0 (1) that has assigned probability of that status less than or equal to a given threshold.
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mutation rate of 10�8 per base pair per generation, and a
recombination rate of 10�8 per base pair per generation,
and generated a single replicate population. The nominal
chromosome length was 300 megabases—approximately
the length of the longest human chromosome (chromo-
some 1). With these parameters, ms produced 1,018,805
SNPs. The 2,000 chromosomes were paired to produce
1,000 diploid individuals. These were then paired to
produce 500 pairs of parents. For each pair of parents,
genotypes for two children were simulated in the same
manner as for Data Set I, except that we used the map to
physical distance ratio 1 MbE1 cM, which is consistent
with the parameters supplied to ms.

These data were then analyzed using MCIBD and
Merlin with clusters. Parental information was withheld
from both algorithms (as for Data Set I), but the true IBD
status for each pair of siblings and each marker locus was
recorded for the purpose of evaluating the results. Both
algorithms were run on a supercomputer with ninety-six
64 bit 1.6 GHz Itanium 2 processor cores and 198 Gigabytes
of shared memory. MCIBD completed the task successfully
in a little less than 91

2 hr, whereas Merlin with clusters had
not produced any output after running for 150 hr and was
therefore terminated.

The accuracy of MCIBD was comparable to that
observed for Data Set I. Almost all loci with 2 alleles IBD
were assigned a probability close to 1 of having 2 alleles
IBD. However, approximately 25% of loci with 1 allele
shared IBD were assigned a probability less than 0.5 of
having 1 allele shared IBD, and approximately 29% of loci
with no alleles shared IBD were assigned a probability less
than 0.5 of having no alleles shared IBD.

DATA SET III—AUSTRALIAN TWINS

The three algorithms were executed on a data set
consisting of SNP genotypes for 169 Australian families,
each including at least one pair of monozygotic or
dizygotic twins. The genotypes were obtained using the
Affymetrix Xba 50k SNP array. Only SNPs on chromosome
15 were used, and a subset of 3,030 SNPs was selected. We
used the approximation 1 MbE1.6 cM for chromosome 15.
We did not expect much LD with this low SNP density,
and thus we did not expect the results to differ much
among the three algorithms. However, we found that
accounting for LD did indeed make a significant differ-

ence for this data set, illustrating the importance of
modelling LD.

The entire data set was analyzed using our method,
Merlin without clusters and Merlin with clusters. How-
ever, we present data for only one pair of dizygotic twins.
The genotypes of the parents of these twins were removed
from the data set. The estimated probabilities of IBD status
0 or 1 are plotted for each of the three methods in Figure 4.
The estimated probability of IBD status 2 at each locus is
just one minus the sum of the other two probabilities.

Note firstly that Merlin, with or without clusters, finds a
high probability of IBD status 1 at a few loci around
marker 2,720, whereas MCIBD finds a high probability of
IBD status 2. Note also that all three algorithms assign a
high probability of IBD status 2 to the surrounding loci
from about marker 2,400 to the end. This entire region
consists of loci at which the siblings have two alleles
identical by state, except for a single marker at locus 2,720
where there is only one allele identical by state. The most
likely explanation is that all loci in this region have two
alleles IBD and that a genotyping error has occurred at
locus 2,720. Our algorithm allows for genotyping error,
and hence can detect this. Merlin, however, cannot allow a
locus with only one allele identical by state to be assigned
IBD status 2. In fairness, it should be noted that the Merlin
package also provides a separate method for detecting
probable genotyping errors, which has not been used here.

Secondly, note that the main region of uncertainty about
IBD status appears to be between markers 400 and 1,100.
Here, Merlin with clusters assigns a probability close to 1
of IBD status 0, whereas Merlin without clusters assigns
lower probabilities of IBD status 0 throughout this region,
and indeed there are two subregions (between markers 600
and 800 and between markers 900 and 1,100) where IBD
status 1 is assigned a higher probability than IBD status 0.
The new algorithm produces intermediate results—it also
assigns lower probabilities to IBD status 0 in the region
between markers 400 and 800, but there is only one
subregion (between markers 600 and 800) where IBD
status 1 is assigned a higher probability.

These data can also be used to compare the precision of
the three algorithms. The precision at a locus can be
quantified in terms of information using the formula:

INF ¼ 1� 8 � PEV;
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Fig. 4. Estimated probabilities that 0 or 1 alleles are shared IBD at 3,030 loci across chromosome 15 in a pair of dizygotic twins,

calculated using (A) MCIBD, (B) Merlin without accounting for LD, and (C) Merlin with haplotype clusters.
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where

PEV ¼ 0:25P1ð1� P1Þ þ P2ð1� P2Þ � P1P2

and P1 and P2 are the estimated probabilities of sharing 1
and 2 alleles IBD, respectively, at a given locus [Visscher
et al., 2006]. Figure 5 shows this measure of precision for
each locus and each algorithm. The three algorithms do
not differ dramatically in their precision for this data, but
there are two regions where the differences are note-
worthy. The first region is between markers 600 and 800.
Here, Merlin without clusters obtains a high precision, but
is probably inaccurate, given that it finds the most
probable IBD state here to be 1, whereas Merlin with
clusters (which our simulated results above suggest is
generally the most accurate of the three algorithms) finds
it to be 0. In this region, MCIBD also predicts IBD status 1
as being most probable, but recognizes the low precision of
this prediction. The second noteworthy region is between
markers 900 and 1,100. Here, Merlin without clusters has a
substantially lower precision than the other two methods,
and indeed it is also likely to be inaccurate in assigning a
higher probability to IBD status 1. Both regions illustrate
the point that accounting for LD can improve precision
and accuracy, even for markers that do not have high
density.

DISCUSSION

The new model and algorithm presented here have
several features that make it an attractive approach to
estimating IBD probabilities in comparison to the algo-
rithm implemented in Merlin. The first is that it accounts
for LD in the founder haplotype population using a much
simpler model than that employed by Merlin, and as a
result it is several orders of magnitude faster (compare the
�4 min run time of our algorithm to the �4 hr run time of
Merlin on the simulated data). Indeed, for the test data
presented here, the new algorithm runs in less time than
Merlin does even without identifying haplotype blocks.

The gain in efficiency will be of great importance as the
SNP density of genotyping arrays increases. It will soon be
necessary to estimate IBD probabilities for millions or tens
of millions of SNPs across hundreds or thousands of
individuals. This is not currently feasible for Merlin using

clusters to account for LD, given that the run time of
Merlin using clusters scales supralinearly. Indeed, in our
analysis of 500 sibling pairs with just over one million
simulated SNPs (Data Set II) Merlin had not produced any
output after running for 150 hr. However, our new
algorithm scales linearly and was able to complete the
calculations in 91

2 hr.
A second advantage is that it identifies genotyping

errors automatically, without requiring a separate step of
analysis. This feature will become even more important
with the advent of individual whole-genome sequencing
data, since errors are expected to be more common under
this scenario than for current genotyping platforms, at
least initially.

Our results for both real and simulated data emphasize
the need to account for LD in the calculation of IBD
probabilities. The results shown in Figure 3 indicate that
accounting for LD results in the correct IBD state being
assigned high probability at many more loci than if LD is
not taken into account. Figures 4(A) and 4(C), when
compared to Figure 4(B), illustrate that accounting for LD
can substantially alter the most probable IBD state in some
regions. These results confirm earlier findings [Schaid
et al., 2002].

It must be admitted, however, that Figure 3 indicates
modelling LD using clusters produces superior results to
modelling it using a Markov model. Presumably the
reason for this is that the block model captures long-range
LD that the Markov model cannot. Moreover, we found
that the accuracy of MCIBD for the large-scale Data Set II
was comparable to that obtained for Data Set I. This
suggests that the discrepancy between MCIBD and Merlin
with clusters seen in Figure 3 is not merely a result of the
small sample size used in Data Set I. Thus, there is genuine
room for improvement to our algorithm. It may be
possible to modify the model for LD used here to include
a small number of well chosen long-range dependencies,
and thus to improve the accuracy of our approach without
sacrificing too much efficiency. It may also be possible to
identify common features of those sites where our
algorithm assigns a high probability to an IBD state other
than the true state, and modify the algorithm accordingly.
This matter warrants further investigation.

In future work, we intend to enhance the model
presented here by including some longer range associa-
tions between markers. One possibility to be explored is
the use of a second- or higher-order Markov chain to
model marker-marker LD. In the related context of
Hidden Markov Model haplotype inference, Sun et al.
[2007] found that increasing the order of Markov process
used in modelling adjacent SNP alleles in ‘‘ancestral’’
haplotypes from first order to third lead to significant
improvement in accuracy of imputation. The efficiency of
that window size may merely reflect the density of
genotyping in the examples studied. Another is to use
multiple, interleaved Markov chains with transition
probabilities calculated for non-adjacent markers. We also
intend to extend the method presented here for larger
pedigrees, possibly incorporating the methods here into a
Markov chain Monte Carlo approach. One further en-
hancement that will be useful for analyzing data from
individual whole-genome sequences would be to account
for fluctuations in sequencing error rates that depend
upon how repetitive the surrounding sequence is, and also
on the nucleotides that are being sequenced. One could
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allow the a parameter to depend upon external factors
such as sequence position or nucleotide (and nearby
nucleotides).
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APPENDIX

Proof that covðHj�1;HjÞ ¼ 0:5 covðGj�1;GjÞ: Recall that
genotypes take the values 0, 1, or 2 and haplotypes take
the values 0 or 1 and note that Gj ¼ Hð1Þj þHð2Þj , where Hð1Þj
and Hð2Þj are the haplotypes for locus j on the two
homologous chromosomes. If haplotypes are independent,
then

covðGj�1;GjÞ ¼ covðHð1Þj�1 þHð2Þj�1;H
ð1Þ
j þHð2Þj Þ

¼ covðHð1Þj�1;H
ð1Þ
j Þ þ covðHð1Þj�1;H

ð2Þ
j Þ

þ covðHð2Þj�1;H
ð1Þ
j Þ þ covðHð2Þj�1;H

ð2Þ
j Þ

¼ covðHj�1;HjÞ þ 0þ 0þ covðHj�1;HjÞ

and the result follows immediately.
Proof that

Qj0 ¼ qj �
covðHj�1;HjÞ

1� qj�1

and

Qj1 ¼ qj þ
covðHj�1;HjÞ

qj�1

This result is obtained as the solution to two simultaneous
equations. The first equation results from the fact that the
probability of a ‘‘1’’ allele occurring at locus j is a function
of qj�1, Qj0 and Qj1 as follows:

qj ¼ ð1� qj�1ÞQj0 þ qj�1Qj1:

The second equation results from the fact that covðHj�1;HjÞ

is given by

covðHj�1;HjÞ ¼ x11 � qj�1qj ¼ qj�1Qj1 � qj�1qj:

Solving these equations for Qj0 and Qj1 simultaneously we
obtain the expressions above.
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