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A Versatile Gene-Based Test
for Genome-wide Association Studies

Jimmy Z. Liu,1,* Allan F. Mcrae,1 Dale R. Nyholt,1 Sarah E. Medland,1 Naomi R. Wray,1

Kevin M. Brown,2 AMFS Investigators,3 Nicholas K. Hayward,1 Grant W. Montgomery,1

Peter M. Visscher,1 Nicholas G. Martin,1 and Stuart Macgregor1,*

We have derived a versatile gene-based test for genome-wide association studies (GWAS). Our approach, called VEGAS (versatile gene-

based association study), is applicable to all GWAS designs, including family-based GWAS, meta-analyses of GWAS on the basis of

summary data, and DNA-pooling-based GWAS, where existing approaches based on permutation are not possible, as well as singleton

data, where they are. The test incorporates information from a full set of markers (or a defined subset) within a gene and accounts for

linkage disequilibrium between markers by using simulations from the multivariate normal distribution. We show that for an associa-

tion study using singletons, our approach produces results equivalent to those obtained via permutation in a fraction of the computation

time. We demonstrate proof-of-principle by using the gene-based test to replicate several genes known to be associated on the basis of

results from a family-based GWAS for height in 11,536 individuals and a DNA-pooling-based GWAS for melanoma in ~1300 cases and

controls. Our method has the potential to identify novel associated genes; provide a basis for selecting SNPs for replication; and be

directly used in network (pathway) approaches that require per-gene association test statistics. We have implemented the approach

in both an easy-to-use web interface, which only requires the uploading of markers with their association p-values, and a separate down-

loadable application.
Gene-based tests for association are increasingly being seen

as a useful complement to genome-wide association

studies (GWAS).1 A gene-based approach considers associ-

ation between a trait and all markers (usually SNPs) within

a gene rather than each marker individually. Depending on

the underlying genetic architecture, gene-based ap-

proaches can be more powerful than traditional indi-

vidual-SNP-based GWAS. For example, if a gene contains

more than one causative variant, then several SNPs within

that gene might show marginal levels of significance that

are often indistinguishable from random noise in the

initial GWAS results. By combining the effects of all SNPs

in a gene into a test-statistic and correcting for linkage

disequilibrium (LD), the gene-based test might be able to

detect these effects. Gene-based tests are also ideally suited

for network (or pathway) approaches to interpreting the

findings from GWAS.2–7 These approaches are necessarily

gene centric and require a measure of the relative impor-

tance of each gene to the phenotype of interest. The

gene-based approach also reduces the multiple-testing

problem of GWAS by only considering statistical tests for

~20,000 genes per genome as opposed to testing more

than half a million SNPs in a typical GWAS.

Ideally, a gene-based test statistic can be obtained with

permutations, where LD structure and other possible con-

founding factors, such as gene size, will be accounted for.

Computing a gene-based test for basic GWAS designs via

permutations is conceptually simple and is currently im-

plemented as the ‘‘set-based test’’ in the PLINK software

package8; however, heavy computational requirements
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have restricted this method from being adopted on

a genome-wide scale. Other gene-based tests, such as those

based on genetic distances9 or entropy,10 are often also

restricted to situations where individual genotype infor-

mation is available or to specific GWAS designs (usually

case-control designs). There are several important situa-

tions in which permutations or existing methods cannot

be used; these include family-based GWAS, GWAS meta-

analyses based on summary data, and DNA-pooling-based

GWAS. In contrast, our approach, called VEGAS (versatile

gene-based association study), only requires individual

marker p values in order to allow computation of a gene-

based p value, and it can be applied to virtually any associ-

ation study design. The method tests the evidence for asso-

ciation on a per-gene basis by summarizing either the full

set of markers (typically SNPs) in the gene or a subset of the

most significant markers (for example, the 10% most

significant SNPs). For some genes, an approach consid-

ering all the markers might be the most powerful; for

others, focusing on just the most associated markers might

be apt. The true underlying genetic architecture is seldom

known in advance. The default gene-based test in our

implementation and in the following examples uses the

full set of markers in the gene. Our approach takes account

of LD between markers in a gene by using simulation based

on the LD structure of a set of reference individuals

from a HapMap phase 2 population (CEU [Utah residents

with ancestry from northern and western Europe]; CHB

and JPT [Han Chinese in Beijing, China and Japanese in

Tokyo, Japan]; or YRI [Yoruba in Ibadan, Nigeria]), which
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provides approximately ~2.1 million autosomal SNPs,11 or

a custom set of individuals if genotype information is

available.

Our method assigns SNPs to each of 17,787 autosomal

genes according to positions on the UCSC Genome Browser

hg18 assembly. In order to capture regulatory regions

and SNPs in LD, we define gene boundaries in this case

as 5 50 kb of 50 and 30 UTRs. Then, for a given gene with

n SNPs, association p values are first converted to upper-

tail chi-squared statistics with one degree of freedom (df).

The gene-based test statistic is then the sum of all (or

a pre-defined subset) of the chi-squared 1 df statistics within

that gene. If the SNPs are in perfect linkage equilibrium, the

test statistic will have a chi-squared distribution with n

degrees of freedom under the null hypothesis. Because

this is unlikely to be the case, however, the true null distri-

bution given the LD structure (and hence p values that

correlate accordingly) will need to be taken into account.

Ideally, one would achieve this by performing a large

number of permutations; however, this is very computa-

tionally intensive, requires individual genotype informa-

tion, and assumes that individuals are unrelated. Instead,

our Monte Carlo approach makes use of simulations from

the multivariate normal distribution and is both much

faster and agnostic regarding the GWAS design.

For a gene with n SNPs, we simulate an n-element multi-

variate normally distributed vector with mean 0 and vari-

ance S, the n 3 n matrix of pairwise LD (r) values. A vector

of n independent, standard, normally distributed random

variables is first generated and then multiplied by the Cho-

lesky decomposition matrix of S – that is, the n 3 n lower

triangular matrix C, such that CCT ¼ S. The new random

vector, Z ¼ ðz1,z2.znÞ, will have a multivariate normal

distribution, Z � Nnð0,
P
Þ. Z is then transformed into

a vector of correlated chi-squared 1 df variables,

Q ¼ ðq1,q2.qnÞ, qi ¼ z2
i . The simulated gene-based test

statistic is then the sum of all (or a predefined subset) of

the elements of Q and will have the same approximate

distribution as our observed gene-based test statistic under

the null hypothesis. A large number of multivariate

normal vectors are simulated, and the empirical gene-

based p value is the proportion of simulated test statistics

that exceed the observed gene-based test statistic.

We have implemented VEGAS in both an easy-to-use

web-interface or as a downloadable application for Linux

and Unix. The only user inputs required are a text file con-

sisting of two columns: SNP rs-name and association p

value, along with specification of the reference population

(CEU, CHB and JPT, or YRI). The downloadable version

also allows the use of custom individual genotypes if avail-

able, as well as specification of gene boundaries. Pairwise

LD correlation matrices are calculated in PLINK. The R

corpcor package is used to correct for non-positive definite

correlation matrices,12 and multivariate normal random

vectors are simulated with the mvtnorm package.13

The number of simulations per gene is determined adap-

tively. In the first stage, 103 simulations will be performed.
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If the resulting empirical p value is less than 0.1, 104 simu-

lations will be performed. If the empirical p value from 104

simulations is less than 0.001, the program will perform

106 simulations. At each stage, the simulations are mutu-

ally exclusive. For computational reasons, if the empirical

p value is 0, then no more simulations will be performed.

An empirical p value of 0 from 106 simulations can be in-

terpreted as p < 10�6, which exceeds a Bonferroni-cor-

rected threshold of p < 2.8 3 10�6 (z0.05/17,787; this

threshold is likely to be conservative given the overlap

between genes). The user may select whether to perform

the gene-based test on the full set of SNPs within a gene,

a specified percentage of the most significant SNPs, or

just the single most significant SNP. Because the program

depends upon the output from other programs, it is impor-

tant to take correct GWAS quality-control measures to

account for issues such as population stratification or pool-

ing errors before using VEGAS.

Using a test with permutations as the ‘‘gold standard,’’

we compared the results from VEGAS to those from the

PLINK set-based test8 with permutations (with parameters

--set-p1 --set-r21 --maf 0.01) on a GWAS for height in 3,611

unrelated Australian individuals drawn from community-

based twin studies conducted from 1980 to 2004. Several

recent genetic studies of other traits,14–16 have used these

samples and have described genotype and phenotype

data cleaning. In brief, height was corrected for age and

sex before being converted to standard z scores. PLINK

was used for performing genome-wide association, from

which the results were used in our method. For a given set

of SNPs, the PLINK set-based test initially performs a stan-

dard association test and then uses the average association

test statistic across these SNPs as the ‘‘set-based’’ test

statistic (VEGAS uses the sum rather than average; the

two methods are equivalent in calculations of empirical p

values). Then, for the permutation procedure, the pheno-

types are randomly shuffled among individuals, and the

process is repeated several thousand times, from which

an empirical p value is obtained. Because of computational

limitations, we only performed the PLINK set-based test on

413 genes on chromosome 22 with 104 permutations each.

To see how both tests deal with more significant genes, we

performed 106–107 permutations on seven additional

genes. These genes were chosen on the basis of having p

values < 10�3 when VEGAS was applied across all chromo-

somes. across all chromosomes. The results from both tests

are shown in Figure 1, which compares the corresponding

�log10(p value)s from the PLINK set-based test and VEGAS

for 420 genes. For the majority of genes, both methods

produced very similar results. Correlation between the

p values was very high (Pearson r ¼ 0.999), as was that

between the rankings (Spearman r ¼ 0.998). Thus, in addi-

tion to being agnostic toward GWAS design, a major

advantage of our method over permutations is speed.

The PLINK set-based test on our computer took ~12 hr to

compute the 413 chromosome 22 genes plus 2 days for

the seven additional genes. In contrast, our approach
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Figure 1. Comparison of the �log10(p value)s from the PLINK
Set-Based Test and VEGAS on a GWAS of Height in 3,611
Individuals
The PLINK set-based test was performed on 413 genes on chromo-
some 22 with 104 permutations (circles) and on seven genes on
other chromosomes; these were selected on the basis of having
the smallest p values from the VEGAS analysis, at 106 to 107

permutations (triangles). The p values from VEGAS were obtained
by running 103 to 107 multivariate normal simulations per gene.
The straight diagonal line indicates a 1:1 relationship.

Figure 2. Comparison of the �log10(p value)s from Permuta-
tions and VEGAS When Only the Single Best SNP from Each
Gene Is Considered
Results are based on a GWAS of height in 3611 individuals. Permu-
tations were performed on 413 genes on chromosome 22 with 103

permutations and on seven additional genes with 105–106 permu-
tations. The p values from VEGAS were obtained from 103–106

multivariate normal simulations per gene. The straight diagonal
line indicates a 1:1 relationship.
with 103 to 106 simulations per gene computed the same

set of genes in less than thirty minutes.

We selected nine nonoverlapping genes of various sizes on

chromosome 22 to further investigate the type I error rate of

our method compared to those from permutations. The

previous height data were permuted 1000 times. VEGAS

and the PLINK set-based test were applied to the association

results of each permutation for each of the genes. The

comparison of the p values for each of the nine genes is

shown in Figure S1. Overall, there does not appear to be

anymajorbias involvedwith VEGAS. Nevertheless, it should

be noted that our method will produce spurious results if the

incorrect reference population, and hence LD structure, is

used. Biases toward smaller p values will occur if the refer-

ence population is older than the study population, and

larger p values will occur in the opposite situation. When

the same 420 genes and 3611 Australian individuals were

used, running VEGAS with the HapMap CEU population

as the reference produced results comparable to those from

permutation (Figure S2A), whereas using the HapMap YRI

population produced significant biases toward smaller

p values (Figure S2B). Slight biases might also potentially

occur for genes with a non-positive definite LD correlation

matrix. In our dataset, this was a property of ~80% of genes,

inhibiting the direct use of Cholesky decomposition. For

these genes, the nearest positive semidefinite matrix is esti-

mated with the R corpcor package.12,17 Matrices that require

a large adjustment might explain some of the discrepancy
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between VEGAS and permutations, although as seen in

Figure 1, this does not appear to have a major effect.

Under some genetic architectures, a more powerful gene-

based method may be to consider only the most significant

SNP in a gene rather than the full set of SNPs and then

correct this SNP’s association p value for gene size and other

possible confounders. Our approach can readily be applied

to this situation. For a gene with n SNPs, recall the simulated

vector of n correlated chi-squared 1 df variables,

Q ¼ ðq1,q2.qnÞ. For the ‘‘Top-SNP’’ method, we define

Qmax as the simulated test statistic of the maximum element

of Q. Then, by simulating a large number of Qmax test statis-

tics, the empirical gene-based p value is the proportion of

simulated Qmax test statistics that exceed the observed test

statistic of the most significant SNP in the gene.

Using the same 420 genes as in our previous analysis

with the full set of SNPs, we compared the VEGAS Top-

SNP method and permutations (Figure 2). Note that in

this case, we ran our own permutations by using R rather

than the PLINK set-based test because the two methods

are not equivalent. As with the test considering the full

set of SNPs, VEGAS produces results very similar to those

from permutations. Correlation between the p values was

very high (Pearson r ¼ 0.996), as was that between the

rankings (Spearman r ¼ 0.996).

Our method of using the full set of SNPs per gene was

applied to two situations where permutation tests are not

applicable: a family-based GWAS for height, where permu-

tation cannot account for phenotypic correlation between
merican Journal of Human Genetics 87, 139–145, July 9, 2010 141



Table 1. VEGAS Results for the 15 Most Significant Genes from a Family-Based GWAS for Height in 11,536 Individuals

Chromosome Gene Number of SNPs Start Position Stop Position Test Statistic p Value Best SNP SNP p Value

4 HHIPa 26 145786622 145879331 263.505 10�6 rs1812175 1.06 3 10�9

6 GPR126a 23 142664748 142809096 169.912 5 3 10�6 rs6570507 2.16 3 10�7

8 CHCHD7a 4 57286868 57293730 31.82 3.2 3 10�5 rs7833986 2.20 3 10�4

6 HMGA1a 6 34312627 34321986 38.934 8.4 3 10�5 rs1776897 6.71 3 10�6

15 ADAMTSL3a 85 82113841 82499597 344.52 1.34 3 10�4 rs7183263 3.89 3 10�7

4 LCORLa 30 17453940 17632474 222.748 1.38 3 10�4 rs6817306 7.63 3 10�6

20 GDF5a 10 33484562 33489441 81.199 1.78 3 10�4 rs4911494 1.39 3 10�4

12 HMGA2a 34 64504506 64646338 147.824 3.00 3 10�4 rs8756 4.26310�7

1 MFAP2 15 17173585 17180668 76.961 3.71 3 10�4 rs11203280 6.03 3 10�4

17 C17orf78 5 32807097 32823775 27.012 5.31 3 10�4 rs8067120 1.80 3 10�3

6 HIST1H3Ga 16 26379124 26379591 86.062 5.77 3 10�4 rs10946808 2.48 3 10�5

2 NMUR1 18 232096114 232103426 102.955 6.05 3 10�4 rs1434519 3.29 3 10�5

4 ADH5 26 100211152 100228954 142.218 8.01 3 10�4 rs1042364 2.45 3 10�4

8 SPATC1 8 145158594 145174003 58.172 8.30 3 10�4 rs3936211 7.35 3 10�4

2 EMX1 13 72998111 73015528 60.278 9.62 3 10�4 rs10183113 3.71 3 10�6

a These genes have been implicated in previous GWAS of height.22 The signal in HIST1H3G is driven by a variant previously implicated in the neighboring
HIST1H1G.
family members, and a DNA-pooling GWAS for melanoma

(MIM 155600), where individual genotype information is

not available. For height, we included an extra 7,935 rela-

tives of those in our original GWAS of 3,611 unrelated indi-

viduals. These consisted of parents, offspring, siblings,

twins, and other family members, all typed with the

same SNP chip as the unrelated individuals used in the first

calculation. The results of the family-based association

analysis were previously published in Liu, et al.18 Table 1

lists the 15 most significant height-associated genes

obtained from VEGAS. One gene, the previously impli-

cated HHIP (MIM 606178; p ¼ 1 3 10�6),19–21 exceeded

a Bonferroni corrected threshold of p < 2.8 3 10�6. Over-

all, nine of the top 15 genes have been previously impli-

cated in published GWAS of height at genome-wide signif-

icance.22 It remains to be seen whether any of the

remaining genes play a role in height. The gene NMUR1

(MIM 604153; p ¼ 6.05 3 10�4) is a G-protein-coupled

receptor and is also involved in neuropeptide signaling,

similar to the previously implicated GPR126 (MIM

612243; p ¼ 5 3 10�6). Height might also be mediated

by MFAP2 (MIM 156790; p ¼ 3.71 3 10�4) through its

role as a glycoprotein component of connective-tissue

microfibrils,23 for which normal connective-tissue devel-

opment is essential for height growth. Mutations in other

microfibril components have been linked to Marfan

syndrome (MIM 154700), a genetic disorder characterized

by skeletal overgrowth.24 These results suggest that despite

having a relatively small sample size for a GWAS for height,

the gene-based test has the potential to identify novel

genes. In a two-stage GWAS, the most significant genes
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may also be used as a basis for selecting SNPs for replication

samples.

For melanoma, the gene-based test was performed on

the results from a GWAS that used pooled DNA in 1354

melanoma cases and 1291 controls. The sample was origi-

nally part of a larger previously published GWAS for mela-

noma,25 and pooling and association methods are

described in that study. This study was performed with

the approval of the appropriate ethics committee and

with informed consent from all participants.

As for height, the results from the gene-based test are

consistent with our current understanding of the genetics

of melanoma (Table 2). Overall, all of the top 15 genes are

in regions known to harbor melanoma-susceptibility

genes. Seven genes identified are located on 20q11.22,

the region originally implicated by Brown et al.25 and con-

taining the skin pigmentation gene ASIP (MIM 600201);

these include MAP1LC3A (MIM 601242; p < 10�6), PIGU

(MIM 608528; p ¼ 2 3 10�6), DYNLRB1 (MIM 607167;

p ¼ 7 3 10�6), TP53INP2 (p ¼ 4.7 3 10�5), and NCOA6

(MIM 605299; p ¼ 1.38 3 10�4). ASIP itself, however,

was nonsignificant (p ¼ 0.116). Given the size of this asso-

ciated region, it could be the case that a distant enhancer

rather than nonsynonymous or proximal regulatory

elements is driving the association with ASIP. Similarly,

a large number of associated genes are also located on

16q24.3; the most significant of these genes was DEF8

(p ¼ 4 3 10�5). Given that DEF8 lies ~30 kb downstream

of the known melanoma-susceptibility gene, MC1R (MIM

155555), it is likely that this signal is driven by variants

in and around MC1R, which was only nominally
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Table 2. VEGAS Results for the 15 Most Significant Genes from a DNA-Pooling GWAS for Melanoma in 1354 Cases and 1291 Controls

Chromosome Gene Number of SNPs Start Position Stop Position Test Statistic p Value Best SNP SNP p Value

20 MAP1LC3A 59 32598352 32611810 762.618 <10�6 rs910873 1.00 3 10�16

20 PIGU 93 32612006 32728750 964.294 2 3 10�6 rs910873 1.00 3 10�16

15 MYEF2 25 46218920 46257850 50.865 4 3 10�6 rs2470102 4.18 3 10�4

20 DYNLRB1 58 32567864 32592423 548.265 7 3 10�6 rs910873 1.00 3 10�16

20 SNTA1 39 31459423 31495359 242.906 9 3 10�6 rs291695 6.60 3 10�11

16 DEF8 73 88542651 88561968 318.251 4.0 3 10�5 rs1805007 3.33 3 10�16

20 TP53INP2 44 32755808 32764898 312.611 4.7 3 10�5 rs4417778 5.35 3 10�9

20 NCOA6 81 32766238 32877094 563.953 1.38 3 10�4 rs4911442 2.71 3 10�10

20 CDK5RAP1 55 31410305 31452998 260.851 1.53 3 10�4 rs291695 6.60 3 10�11

5 RXFP3 48 33972247 33974099 138.421 1.95 3 10�4 rs35389 1.31 3 10�8

16 C16orf55 49 88251710 88265176 244.276 3.12 3 10�4 rs258322 1.34 3 10�7

16 MGC16385 59 88563701 88566443 218.033 3.99 3 10�4 rs8049897 9.74 3 10�7

16 DPEP1 58 88207216 88232340 248.214 4.54 3 10�4 rs12918773 4.47 3 10�7

16 CHMP1A 52 88238344 88251630 248.105 4.60 3 10�4 rs258322 1.34 3 10�7

16 SPG7 73 88102305 88151675 370.214 4.66 3 10�4 rs4785686 2.76 3 10�7
significant (p ¼ 1.30 3 10�3), rather than DEF8 itself. Like-

wise, the gene RXFP3 (p ¼ 1.95 3 10�4) is adjacent to

SLC45A2 (MIM 606202; p ¼ 8.91 3 10�3), a known mela-

noma-susceptibility gene, and MYEF2 (p ¼ 4 3 10�6) is

adjacent to SLC24A5 (MIM 609802; p ¼ 2.34 3 10�3),

a gene associated with skin pigmentation.

Although VEGAS was able to produce results equivalent

to those obtained through permutations at a fraction of

the time taken, as well as replicate several known height-

and melanoma-associated genes, there are several situa-

tions in which use of the gene-based test is limited. The

effectiveness of VEGAS, along with other gene-based

methods, is determined by the underlying genetic archi-

tecture of the gene and phenotype of interest. Although

gene-based methods are more powerful than single-marker

analysis for identifying significant genes with multiple

causal variants, the converse is also true. If a gene contains

only one causal variant, then the inclusion of a large

number of nonsignificant markers into the gene-based

test will dilute this gene’s significance. The correct genetic

model to use is seldom known in advance, although our

method can be performed on a specified subset of markers

or just the single most significant marker rather than all

markers in a gene. Similarly, the use of 5 50 kb to define

gene boundaries is an arbitrary choice. Large boundaries

mean that some markers are included in multiple genes, re-

sulting in a situation similar to our results for melanoma,

where it may be difficult to pinpoint the causal gene

when multiple adjacent genes are statistically significant.

Specifying stringent boundaries, however, may not fully

capture regulatory regions or those SNPs in high LD with

variants in the gene. Moreover, given that the majority

of SNPs so far identified in GWAS are found in nongenic
The A
regions,26 these SNPs would not be included in any gene-

centric analysis at all. For these reasons, gene-based

methods should not be seen as a replacement for tradi-

tional single-marker association studies but rather should

be seen as a complement to GWAS and an essential step

for network- and pathway-based approaches. We offer

our gene-based test not as a definitive solution to the

problem but also as one tool in the complex-trait geneti-

cist’s toolbox for post-GWAS analysis.
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