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The expression level for 15 887 transcripts in lymphoblastoid cell lines from 19 monozygotic twin pairs
(10 male, 9 female) were analysed for the effects of genotype and sex. On an average, the effect of twin
pairs explained 31% of the variance in normalized gene expression levels, consistent with previous broad
sense heritability estimates. The effect of sex on gene expression levels was most noticeable on the X
chromosome, which contained 15 of the 20 significantly differentially expressed genes. A high concordance
was observed between the sex difference test statistics and surveys of genes escaping X chromosome
inactivation. Notably, several autosomal genes showed significant differences in gene expression between
the sexes despite much of the cellular environment differences being effectively removed in the cell lines.
A publicly available gene expression data set from the CEPH families was used to validate the results. The
heritability of gene expression levels as estimated from the two data sets showed a highly significant positive
correlation, particularly when both estimates were close to one and thus had the smallest standard error.
There was a large concordance between the genes significantly differentially expressed between the sexes
in the two data sets. Analysis of the variability of probe binding intensities within a probe set indicated
that results are robust to the possible presence of polymorphisms in the target sequences.

INTRODUCTION

The use of whole-genome gene expression studies has
received considerable attention in recent years because of
their potential to provide a greater understanding of the
biology of complex diseases (1–3). Initial investigations
have provided an understanding of the natural variation in
human gene expression levels and have demonstrated that a
significant proportion of this is heritable (4–6). However,
there have been no comparisons made regarding the concor-
dance of the heritability estimates across studies.

The best methodology for the analysis of gene expression
data has not been determined, with many new methods, or var-
iants of old methods, being proposed on a regular basis (7,8).
The choice of analysis methodology is further complicated by
the differences in results obtained with different methods (9).
Comparisons between different methods of data analysis are
hampered by the fact that the majority of gene expression
data sets are generated without prior knowledge of the under-
lying determinants of expression levels. Thus, the comparison
of positive results obtained by different methods is not possi-
ble. Some progress has been made in this area through the
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used of controlled experiments where the expression levels of
various transcripts are adjusted manually (9,10). However,
such experiments do not capture the biological interactions
that occur between gene expression levels and thus
conclusions based on such studies need to be treated with
caution.

A novel alternative is to use a well-studied biological
phenomenon as a baseline for comparisons. Ideally, a candi-
date would be reasonably ubiquitous so that gene expression
data generated for other purposes could be used in model
testing. One such biological phenomenon is X chromosome
inactivation. It is well known that one of the X chromosomes
in mammalian females is silenced as a method of dosage com-
pensation (11,12). However, a few genes escape X inacti-
vation to varying extents (13,14). Genes that escape X
inactivation are therefore expressed at higher levels in
females than in males. The relative expression levels of
females may be below twice that of males (which may be
expected given twice the copies of the gene), as the escape
from inactivation is not necessarily complete. The utility of
gene expression microarrays in the examination of X chromo-
some inactivation has previously been demonstrated (15).
Recently, a comprehensive analysis of expression of
X-linked genes has been performed by examining the
expression of allelic variants in fibroblast lines (16). Given
the underlying nature of X inactivation, it appears reasonable
that these results will extend to other cell lines and biological
samples where these genes are expressed. Thus, this survey
provides an ideal data set to assess the quality of results
obtained from the analysis of microarray data.

In this study, the analysis of gene expression levels is per-
formed using linear mixed models. Mixed models are a class
of powerful and versatile models that simultaneously fit
observed ‘fixed’ effects (such as sex and age) that cause
mean differences between samples and unobserved ‘random’
(or latent) effects that cause correlation between samples.
These models allow the estimation of systematic effects
while simultaneously partitioning the remaining variation
into sources of underlying causal effects. Mixed linear
models have been used extensively in biology research (17)
and are implemented in widely available statistical packages.
Mixed model methodology is applicable to a wide variety of
experimental designs. Correlations caused by genetic related-
ness between samples are readily accounted for in the mixed
model framework (18,19) and an option to perform such an
analysis through the specification of a pedigree file is often
included in software packages that implement mixed
models. For all of these reasons, mixed models are appealing
for use in the analysis of gene expression data. The flexibility
of the mixed model framework for the analysis of gene
expression data was recently demonstrated in an analysis
that included terms to model across-species differences in
probe binding efficiency (20).

Here, we estimate the effect of sex and genotype on gene
expression in lymphoblastoid cell lines (LCLs) from a
sample of monozygotic (MZ) twin pairs using linear mixed
models. The results are compared with those obtained using
a second publicly available data set of gene expression from
the CEPH families that contained a subset of the genes
analysed.

RESULTS

Data pre-processing and normalization

Gene expression levels in LCLs from 19 MZ twin pairs were
measured using Affymetrix Human Genome U133 plus 2.0
Gene Chips. Of the 56 675 transcripts whose expression
levels were measured on the chip, 15 887 were determined
to be expressed across 100% of samples. The normalization
of the data across chips and genes demonstrated that the
vast majority (97%) of the variance in the transformed
expression levels was due to differences in average expression
level across genes. As expected, the across chip variance was
negligible due to scaling performed during the data pre-
processing stages (see Materials and Methods).

Partitioning of the variance in expression levels

The variance in gene expression levels for a particular gene
was partitioned using a linear mixed model. Out of the
15 887 genes analysed in the single-gene analysis, 2106
(13%) provided a zero estimate for the proportion of the var-
iance in gene expression levels explained by pair (Fig. 1).
Although this value is biased upwards due to the lack of
power afforded by the sample size, it is significantly lower
than the 50% expected under the null hypothesis of no effect
of pair (21). On an average, the pair intra-class correlation is
0.31 or, stated alternatively, the twin pairings explained 31%
of the variance in the normalized expression levels. In the
absence of common environmental influences, this is a
measure of the broad sense heritability of a gene’s expression
level. The intra-class correlation is measuring the proportion
of variance explained by twin pairings and thus is bound
between 0 and 1, unlike a standard correlation that has a
range of 21 to 1. This constraint is standard in a mixed
model framework and occurs commonly in biological appli-
cations such as heritability estimation and linkage mapping
of quantitative trait loci, where the proportion of variance
attributable to additive genetic effects has a lower bound of

Figure 1. The distribution of estimated intra-class correlation of expression
levels in MZ twin pairs.
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zero. From the distribution of non-zero intra-class correlations
of MZ twin pairs, a reasonably symmetric decay around the
mode of the distribution is apparent and indicates that the
extent of this bias in the average proportion of variance
explained by twin pairings caused by the imposed lower
bound is limited.

Effect of sex on expression levels

The distribution of test statistics for the difference in average
expression levels between male and female MZ twin pairs is
given in Figure 2. These are calculated such that a positive
test statistic represents an increased level of expression in
females when compared with males. As expected when per-
forming a large number of tests on genes that will, in the
majority of cases, not be differentially expressed between
the sexes, the central portions of the distribution closely
match the expected normal distribution. The distribution is
also consistent with the hypothesis that a large proportion of
the differences are due to escape from X-inactivation, with
the distribution of test statistics having a positive mean
(0.06; P , 0.05) and skew (0.21; P , 1025).

Table 1 summarizes all probe sets with an absolute test stat-
istic for differential expression between the sexes greater than
four. Assuming normality of test statistics, this corresponds to
a point significance of �0.00006. While this is not as stringent
as a Bonferroni correction on the 15 887 tests being per-
formed, many of these tests are non-independent due to corre-
lations among expression levels across genes, thus using
Bonferroni would result in an over-correction and subsequent
loss of power to detect differentially expressed genes. In total,
31 gene-probes were detected to be differentially expressed
between the sexes. These represented 20 distinct genes (and
one unannotated target) with DDX3X represented four times,
UTX represented three times and EIF1AX, U2AF1L2,
RBBP7, CD99 and EIF2S3 represented twice. The genes in
Table 1 were represented by a further 10 genes that were
not detected to be significantly differently between the
sexes. However, five of the 10 had test statistics of magnitude
greater than three and the 10 genes had an average test statistic

magnitude of 2.63, much greater than expected by random
chance (P , 1026). Of the 20 distinct genes, 15 are located
on the X chromosome, a markedly larger proportion than
expected by chance. Of the five autosomal probe sets that
detect differential expression between the sexes, two are for
predicted genes (C18orf1, ERICH1) and the remaining three
(UTP15, METT5D1 and FEZ1) are not obvious candidates
for genes causative of sexual differentiation.

Recently, a comprehensive survey of activation status of
genes on the X chromosome was performed in fibroblast cell
lines (16). Approximately, 70% of the genes on the X chromo-
some detected as being expressed in the LCLs used in this
study were also detected in the fibroblast cell lines used by
Carrel and Willard. Figure 3 compares Carrel and Willard’s
observed X inactivation status with the test statistic obtained
from the analysis of MZ pairs. These show a sizeable concor-
dance with the genes showing high test statistics also being
detected by Carrel and Willard as escaping X inactivation fre-
quently. This observation may not be surprising given that
complete escape from X inactivation would result in the
(approximate) doubling of expression levels in females when
compared with males. However, the detection of these differ-
ences even with the sample size used in this study demon-
strates the potential to uncover differences in gene
expression levels between two or more groups.

Validation using CEPH family data

The publicly available expression data from CEPH families
(5) provides replication of 4061 of the 15 887 (26%) genes
analysed in the MZ twin pairs. Figure 4 plots the intra-class
correlation of gene expression levels in MZ twin pairs
against the heritability of gene expression estimated from
the CEPH data. On an average, the twin intra-class correlation
is greater than the CEPH heritability estimates. This is
expected as the twin intra-class correlation includes variance
from dominance and genetic interaction. It is also possible
that common environmental influences are stronger between
MZ twin pairs than individuals in a three generation pedigree,
which would further inflate the MZ intra-class correlations.
However, it is uncertain whether such influences remain in
LCLs. Despite these differences, the MZ intra-class corre-
lations and CEPH heritabilities show a highly significant cor-
relation of 0.20 (P , 10215). The relationship is particularly
strong when restricting the data set to MZ intra-class corre-
lations greater than 0.8. This is a consequence of the
reduced standard error of heritability estimates in this region.

The test statistics for differential expression between the
sexes obtained from the MZ pairs and the CEPH families
are compared in Figure 5. As expected under the assumption
that the majority of genes are not differentially expressed
between the sexes, the majority of test statistics are scattered
in a circle around the central area. However, the majority of
the large test statistics are concordant in both samples.
Table 2 lists all probe sets that had an absolute test statistic
greater than four in the CEPH families. All of the 14 genes
detected as differentially expressed were for unique genes,
only one of which was not located on the X chromosome.
Of these 14 genes, 10 were previously detected as differen-
tially expressed in the MZ twin sexes. The large amount of

Figure 2. The distribution of the test statistic for the effect of sex (female–
male) on gene expression. Vertical bars give the positions of test statistics
with absolute value greater than four.
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replication between the two data sets demonstrates that
although an exact significance threshold was not determined
for these data sets, the chosen thresholds are suitably stringent.
Further evidence for differential expression can be obtained by
combining the test statistics from the MZ and CEPH analyses.
A large positive value from the multiplication of the two test
statistics implies concordance between the test statistics. A
significance threshold can be obtained using the magnitude
of the most negative combined test statistic, as the distribution
of the combined test statistic is expected to be symmetrical
under the null hypothesis of no effect of sex on gene
expression. This approach relies on the lower end of the distri-
bution of test statistics being accurately estimated from that
data and should be satisfied with this data set containing
almost 16 000 data points. As the most negative combined
test statistics is 25.64, any combined test statistic greater
than 5.64 can be considered significant. Six further genes

are detected as differentially expressed using the combined
analysis (Table 3). Three of these genes with the largest test
statistics were located on the X chromosome and the remain-
ing three are situated on autosomal chromosomes.

DISCUSSION

In this study, the effects of genotype and sex on gene
expression levels in human LCLs have been examined.
Initially, a novel data set of the gene expression levels from
19 MZ twin pairs were analysed. The results from this analysis
were then validated using a publicly available data from
CEPH families that contained expression information on a
subset of the genes analysed in the twin pairs.

The analysis of the effect of twin pair on the effect of
expression levels in this study has demonstrated a significant

Table 1. Summary of probes with an absolute test statistic for differential expression between the sexes greater than four

Systematic Gene symbol Chromosomal location Test statistic Gene description

203992_s_at UTX Xp11.2 9.49 Ubiquitously transcribed tetratricopeptide repeat, X
chromosome

212515_s_at DDX3X Xp11.3-p11.23 9.05 DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-linked
212514_x_at DDX3X Xp11.3-p11.23 6.64 DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-linked
201018_at EIF1AX Xp22.12 6.51 Eukaryotic translation initiation factor 1A,

X-linked
201211_s_at DDX3X Xp11.3-p11.23 6.49 DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-linked
201210_at DDX3X Xp11.3-p11.23 6.48 DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-linked
213876_x_at U2AF1L2 Xp22.1 6.07 U2(RNU2) small nuclear RNA auxiliary

factor 1-like 2
239106_at CA5BL Xp22.2 5.92 Carbonic anhydrase VB-like
228043_at UTP15 5q13.2 5.90 UTP15, U3 small nucleolar ribonucleoprotein,

homolog (yeast)
1557954_at RBBP7 Xp22.2 5.63 Retinoblastoma binding protein 7
208174_x_at U2AF1L2 Xp22.1 5.59 U2(RNU2) small nuclear RNA auxiliary

factor 1-like 2
203990_s_at UTX Xp11.2 5.09 Ubiquitously transcribed tetratricopeptide repeat, X

chromosome
201029_s_at CD99 Xp22.32; Yp11.3 25.02 CD99 antigen
202383_at SMCX Xp11.22-p11.21 4.96 Smcy homolog, X-linked (mouse)
209573_s_at C18orf1 18p11.2 24.69 Chromosome 18 open reading frame 1
203974_at HDHD1A Xp22.32 4.64 Haloacid dehalogenase-like hydrolase domain containing 1A
1554447_at LOC554203 Xq13.2 4.63 Hypothetical LOC554203
203991_s_at UTX Xp11.2 4.62 Ubiquitously transcribed tetratricopeptide repeat, X

chromosome
227520_at RBBP7 Xp22.2 4.60 Retinoblastoma binding protein 7
216342_x_at – – 4.56 –
214678_x_at ZFX Xp21.3 4.55 Zinc finger protein, X-linked
201028_s_at CD99 Xp22.32; Yp11.3 24.48 CD99 antigen
204061_at PRKX Xp22.3 4.48 Protein kinase, X-linked
207551_s_at MSL3L1 Xp22.3 4.44 Male-specific lethal 3-like 1 (Drosophila)
224935_at EIF2S3 Xp22.2-p22.1 4.40 Eukaryotic translation initiation factor 2,

subunit 3 gamma, 52kDa
201016_at EIF1AX Xp22.12 4.36 Eukaryotic translation initiation factor 1A,

X-linked
224936_at EIF2S3 Xp22.2-p22.1 4.36 Eukaryotic translation initiation factor 2,

subunit 3 gamma, 52kDa
201589_at SMC1L1 Xp11.22-p11.21 4.25 SMC1 structural maintenance of chromosomes

1-like 1 (yeast)
238773_at METT5D1, METT5D2 11p14.1, 3q25.31 24.11 Methyltransferase 5 domain containing 1,

methyltransferase 5 domain containing 2
203562_at FEZ1 11q24.2 24.07 Fasciculation and elongation protein zeta

1 (zygin I)
1563315_s_at ERICH1 8p23.3 24.05 Glutamate-rich 1
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between pair variance for the majority of genes. This strongly
suggests a significant genetic component, and thus heritabil-
ity, for gene expression levels. However, care needs to be
taken in making such a conclusion, as the between pair var-
iance of MZ twin pairs includes both additive and non-
additive genetic variance as well as potential common
environmental variance (22). An analysis of expression
levels in a sample of 10 MZ and five dizygotic (DZ) pairs

has previously been presented (6). It was shown that the
expression levels were more similar within MZ pairs than
within DZ pairs, thus demonstrating a genetic component to
expression levels. As the distributions of Fisher’s Z trans-
formed intra-class correlations for MZ twin pairs is similar
in both this study and the study by York et al. (this study:
mean ¼ 0.34, SD ¼ 0.27; York et al.: mean ¼ 0.30,
SD ¼ 0.38), their conclusion of a significant genetic com-
ponent to gene expression levels is likely to extend to this
study as well, although the observation that DZ twin pairs
show an average zero intra-class correlation indicating that
an overall epistatic control of gene expression are unable to
be supported by this study. Here, the intra-class correlations
from MZ twin pairs were compared with narrow-sense herit-
ability estimates from data on 14 CEPH families. The twin
intra-class correlations include effects due to non-additive
genetic variation and common environmental variation in
addition to additive genetic variance and thus are inflated
when compared with narrow-sense heritability estimates.
This is reflected in the average heritability estimate from the
CEPH families being lower than the intra-class correlation
for the heritability. However, a significant correlation was
observed between these estimates, particularly when the intra-
class correlation and heritability estimates were high and thus
have smaller standard errors. A further study has examined the
effect of family relationship on variation in gene expression
using a sample of CEPH families (4). The distribution of sig-
nificantly heritable genes (Fig. 1) shows marked similarity to
the upper end of the distribution of the proportion of variance
attributable to the pairing of the twins from this study (Fig. 1).

A potential source of bias in estimating the heritability of
expression level is sequence variation in the investigated indi-
viduals for the target sequence of the probe (23,24). If such

Figure 3. The distribution of test statistics for sex (female–male) across the X
chromosome. Symbols represent the proportion of genes escaping X inacti-
vation in fibroblast cell lines as presented by Carrel and Willard (2005).
Genes are divided into groups where greater than two-thirds of their
samples demonstrated escape from X inactivation (þ), those showing
between one and two-thirds escaping (�) and those where less than one-third
of samples escape (2).

Figure 4. Comparison of intra-class correlation of expression levels in MZ
twins with narrow sense heritabilities estimated from CEPH families. Horizon-
tal lines represent the average heritability estimate in the CEPH family for
probes in the relevant intra-class correlation window in the MZ twins.

Figure 5. Comparison of test statistics for differential gene expression
between males and females in the MZ pairs and CEPH families.
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variation is present, estimates of expression differences
between individuals may not reflect actual differences but
rather sequence variation in the population. In the results pre-
sented here, the between pair variance could be inflated,
biasing the intra-class correlation upwards as any sequence
variation is also grouped with twin pairs. However, it is unli-
kely that this source of bias will affect the estimates of differ-
ences due to sex as sequence variation will be random across
the sexes. The extent of this potential bias was addressed by
examining individual probe levels within a probe set. A
linear mixed model was used to model the deviation of all
background-corrected probes for a particular target sequence
from their median within each individual. This measure is
used as it removes the overall expression differences
between individuals and follows the approach used by the
MAS 5.0 algorithm used in calculating the relative weight of
each probe when summarizing the probe set expression
levels (25). As with the overall expression levels, these were
used to estimate an intra-class correlation for the deviations
in probe level. The model used a probe by pair interaction
to allow individual probes to deviate independently within a
pair. A similar approach is used by Doss et al. (24), who fit

a probe by strain interaction to model SNPs in mouse lines.
The premise of this approach is that if sequence variation is
affecting probe binding, then the between pair variance (and
thus intra-class correlation) will be increased.

Figure 6 shows the comparison of the intra-class corre-
lations for the probe deviation to that of the summarized
expression level. The data show a weak correlation of 0.17,
indicating that the differences in probe binding across pairs
is responsible for only 2.8% of the variation in expression
level. The results from correcting for probe binding differ-
ences across pairs using a simple linear regression showed
little deviation from the distribution of heritabilities presented
in Figure 1, with the overall mean reducing from 0.31 to 0.28.
The correlation between the probe deviation heritability and
the absolute value of the test statistic for sex differences is
0.01, which is not significantly different from zero
(P ¼ 0.15), as expected.

The effect of sex on gene expression in LCLs was examined
in both the MZ twin pairs and CEPH families. The majority of
the genes detected as differentially expressed were located on
the sex chromosomes. Although it would be expected for
many genes to be differentially expressed between the sexes

Table 2. List of probes showing differential expression between males and females in the CEPH families

Systematic Gene symbol Chromosomal location Test statistic Gene description

203974_at HDHD1A Xp22.32 16.54 Haloacid dehalogenase-like hydrolase domain containing 1A
203992_s_at UTX Xp11.2 11.61 Ubiquitously transcribed tetratricopeptide repeat, X

chromosome
201018_at EIF1AX Xp22.12 11.49 Eukaryotic translation initiation factor 1A,

X-linked
208174_x_at U2AF1L2 Xp22.1 9.76 U2(RNU2) small nuclear RNA auxiliary

factor 1-like 2
204061_at PRKX Xp22.3 8.96 Protein kinase, X-linked
207551_s_at MSL3L1 Xp22.3 7.91 Male-specific lethal 3-like 1 (Drosophila)
201589_at SMC1L1 Xp11.22-p11.21 7.73 SMC1 structural maintenance of chromosomes

1-like 1 (yeast)
201029_s_at CD99 Xp22.32; Yp11.3 25.77 CD99 antigen
202383_at SMCX Xp11.22-p11.21 5.71 Smcy homolog, X-linked (mouse)
201210_at DDX3X Xp11.3-p11.23 5.48 DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-linked
201099_at USP9X Xp11.4 5.35 Ubiquitin specific peptidase 9, X-linked (fat facets-like, Drosophila)
203767_s_at STS Xp22.32 4.92 Steroid sulfatase (microsomal), arylsulfatase C,

isozyme S
200933_x_at RPS4X Xq13.1 4.38 Ribosomal protein S4, X-linked
204161_s_at ENPP4 6p21.1 24.18 Ectonucleotide pyrophosphatase/phosphodiesterase 4 (putative function)

Probes replicating results from the analysis of MZ twin pairs are given in bold.

Table 3. Summary of additional probes showing evidence for differential expression between the sexes when combining results from MZ pairs and CEPH families

Systematic Gene symbol Chromosomal location Test statistic Gene description

217176_s_at ZFX Xp21.3 12.20 (þ) Zinc finger protein, X-linked
219351_at TRAPPC2 Xp22 7.79 (þ) Trafficking protein particle complex 2
200964_at UBE1 Xp11.23 7.68 (þ) Ubiquitin-activating enzyme E1 (A1S9T and

BN75 temperature sensitivity complementing)
201925_s_at DAF 1q32 6.58 (2) Decay accelerating factor for complement

(CD55, Cromer blood group system)
208770_s_at EIF4EBP2 10q21-q22 6.42 (þ) Eukaryotic translation initiation factor 4E

binding protein 2
212878_s_at KNS2 14q32.3 5.82 (2) Kinesin 2

The sign besides the combined test statistic indicates the direction of the average expression level in females relative to males.
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given the readily observable differences between males and
females for a wide variety of traits (26), this effect is
expected to be much reduced in cell-lines that are grown
on a uniform media. Eleven of the 31 genes that were
detected as being differentially expressed between the sexes
in MZ twin pairs also were present in the CEPH data
subset. Of these, 10 were replicated using the CEPH family
data, with the remaining gene (FEZ1) having a test statistic
(23.29) approaching the chosen significance threshold in
the CEPH families. However, of the four genes detected as
differentially expressed between the sexes in the CEPH
families but not in the MZ twin pairs, the test statistics in
MZ pairs were relatively small, although all in the same
direction. The combined MZ twin and CEPH family tests
for differential expression detected six further genes as
being differentially expressed.

Differences in expression levels between males and females
on autosomal chromosomes is also of interest, although these
genes are not able to be used to validate the performance of
different analysis methods as the understanding of the under-
lying differences is, in general, incomplete. The effect of sex
on gene expression levels in peripheral blood cells has been
examined, identifying a number of genes as being differen-
tially expressed between the sexes (27). The use of peripheral
blood cells instead of cell lines introduces much more vari-
ation in genes that are differentially expressed between the
sexes. This is reflected in that the majority of their signifi-
cantly differentially expressed genes are not located of the
sex chromosomes. However, none of these overlap with the
autosomal genes detected as differentially expressed in this
study.

The mixed model framework is an extremely versatile
approach to the analysis of gene expression data. The ability
to simultaneously fit observed fixed and random effects
allows a wide variety of study designs to be analysed. Here,

we included random effects to account for correlations in
the data caused by genetic relatedness between sampled indi-
viduals and for the effect of replicated gene expression
measurements. The testing of the fixed effect of sex on gene
expression is exactly the same approach used to model gene
expression differences between any two groups, perhaps of
most interest being disease status. Although not examined in
this study, testing the effects of continuous variables on
gene expression is readily achieved in a similar manner. For
example, testing the effect of age on the gene expression
data from the MZ twin pairs used in this study provides evi-
dence for the expression level of HLA-DQB1 and BCL11A
decreasing with age and suggestive evidence of effects on
several other genes (CDC42, IGLJ3, ITPK1, P2RY5, PLTP,
S100A11). However, these results need to be treated with
caution as the distribution of the ages in this sample has
several outliers. The appeal of the mixed model framework
has seen a rapid increase of its use in the analysis of gene
expression data in the past few years to its current position
as the gold-standard approach.

MATERIALS AND METHODS

Monozygous twin pairs

The sample consisted of participants with epilepsy recruited
from the Australian Epilepsy Twin Database (AETD), partici-
pants with bipolar disorder, brief psychotic disorder and
schizophrenia from the Queensland Centre for Mental
Health Research Twins Database and control participants
recruited from the Australian Twin Registry. The exact com-
position is: one pair discordant for schizophrenia, one pair dis-
cordant for brief psychotic disorder, three pairs discordant for
bipolar disorder, five pairs discordant for epilepsy, four pairs
concordant for epilepsy and five unaffected pairs. Hence, the
cell lines are based upon 18 affected individuals (one schizo-
phrenic, one person affected with brief psychotic disorder,
three with bipolar disorder and 13 with epilepsy) and 20 unaf-
fected individuals. Because of the mixture of disease status
among the samples, the relatively balance nature of this
status across pairs and sexes and the expectation that each
disease will only alter the expression status of a very small
fraction of genes, the effects of this sample heterogeneity on
the results presented here is likely to be limited. This has
been confirmed by modelling the effects of the most
common disease in this sample (epilepsy). Adding disease
status to the model used here has essentially no effect on the
estimates of the fixed effects and twin correlation. The corre-
lation of the sex test statistics for the models with and without
disease status was 0.995 and the correlation between the esti-
mates of twin correlation was 0.98. Zygosity was tested using
an AmpFLSTR Profiler Plus PCR Amplification Kit (Applied
Biosystems), and data was analysed using Genescan v3.7.1
software (Applied Biosystems) and Genotyper v2.5 software
(Applied Biosystems) to confirm MZ twin status. In total, 19
MZ twin pairs were obtained, 10 male and nine female
pairs. A male twin pair had blood taken on two separate
occasions, 64 days apart. The twin pairs had an average age
of 34 with an SD of 12 years.

Figure 6. Comparison of MZ twin pair intra-class correlations for probes set
expression level and individual probe deviations from the probe set median.
The low correlation between the two measures indicates that bias in expression
level intra-class correlations due to sequence variation between pairs is
limited.
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Sample preparation

LCLs were established by Epstein-Barr virus transformation
of lymphocytes (28). For RNA, cell lines were all grown
under tightly controlled growth conditions in the same batch
of RPMI 1640 media with 10% FCS and antibiotics, to limit
the cell culture effects on RNA production. Total RNA was
extracted from samples using Qiagen RNeasy Midi-Kits,
when cells were in log phase growth. RNA from all samples
was run on an Agilent Bioanalyzer to assure quality and to
obtain concentration.

Microarray hybridization

Expression profiles were generated by hybridizing 5 mg of
total RNA to Affymetrix Human Genome U133 plus 2.0
Gene Chips (HG U133plus 2.0) according to the Affymetrix
Eukaryote One-cycle protocol. Briefly, 5 mg of total RNA
were used to generate biotinylated cRNA, which was fragmen-
ted and hybridized to an Affymetrix whole genome chip, HG
U133plus 2.0 for 16 h at 458C in an Affymetrix Hybridization
Oven 640. Gene Chips were then washed and stained on an
Affymetrix Fluidics Station 450 and subsequently scanned
on an Affymetrix GeneChip Scanner 3000 to obtain fluor-
escence intensities.

Data pre-processing

Relative expression values were generated for each transcript
using Affymetrix MAS5.0 algorithm in the GeneChipw Oper-
ating Software (GCOS) version 1.2, with the average intensity
of all transcripts on each array scaled to 150. Data were then
filtered for transcripts which were present across 100% of
samples according to the global-error threshold calculated by
GeneSpring’s (v7.2) cross-gene error model. An important
consequence of only including genes detected as expressed
in all samples is the removal of all Y chromosome transcripts.

CEPH family data

Several gene expression data sets from Centre d’Etude du
Polymorphisme Humain (CEPH) Utah pedigrees (29) are pub-
licly available. These can be used to provide validation of the
genes determined to be significantly differentially expressed
between the sexes and the estimates of heritability of gene
expression. Here, the data set generated by Morley et al. (5)
is chosen, as the chip used in that study used a subset of
probes on the chip used in this study and the data pre-
processing methods in that study are similar to those used
here. This microarray data has GEO accession no. GSE1485.
Briefly, the data were from members of 14 CEPH families
(CEPH 1333, 1340, 1341, 1345, 1346, 1347, 1362, 1408,
1416, 1418, 1421, 1423, 1424 and 1454) with expression
levels measured on Affymetrix Genome Focus Arrays. This
data set had partial replication with a total of 277 chips on
the 194 individuals. The probes were filtered to only include
those that were selected in the MZ twin data set. All these
probes would also have been selected using the ‘always
present’ criterion originally used in filtering the MZ twin
data set.

Data normalization

Pre-processed data were transformed using the
generalized-logarithm transformation (30–32) to achieve a
stabilized variance distribution across average expression
levels. This transformation can be written in several forms
and is presented here as:

y ¼ ln
xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ c

p

2

 !

where x is the pre-processed expression level, y the trans-
formed level and c a constant chosen for optimal variance
stabilization. This is an attractive class of transformation as
it approaches the widely used log transformation as x gets
large relative to c, but allows an approximately linear trans-
formation at low levels of x consistent with the observed
data patterns. As the data has been filtered to only include
genes which show significant gene expression in all samples,
the usual approach of estimating c using a regression of the
variance on the mean of a gene expression level is not appro-
priate. Instead, c was chosen such that the correlation of a gene
expression level on the rank of its mean was zero. This
approach minimizes the leverage of genes with high
expression on the final transformation.

Further normalization was performed to allow expression
levels to be compared across chips and genes. This was
achieved using the mixed linear model.

yij ¼ mþ Ci þ Gj þ rij

where yij is the transformed expression level for individual i on
chip j, Ci and Gj are random effects removing variation in the
data due to chip and gene differences and rij is the residual.
The between chip variance is expected to be small due to
the scaling that was performed during the pre-processing of
the data. The residuals from this model were used in all
further analyses.

Analysis of the effect of genotype on expression levels

Linear mixed models were used to assess the effects of sex and
genotype on the normalized gene expression levels. For the
MZ pairs, the model used was:

rijk ¼ mþ Sij þ Pi þ Rk þ Eijk

where the response variable rijk is the normalized expression
level for the jth individual of the ith pair in replicate k. The
variable m represents the average expression level across all
individuals and the fixed effect Sij is the difference between
the average expression levels of males and females.
The remaining terms are the random effects that partition
the remaining variance in the data with Pi being the variance
between pairs, Rk the replication variance and Eijk the residual
variance. Parameters were estimated using residual maximum
likelihood (REML) with the program ASReml (33). The intra-
class correlation for each gene was calculated as sP

2/(sP
2
þ

sR
2
þ sE

2), where additional subscripts are removed for
simplicity. This is simply the proportion of the variance in
the data explained by pair and in the absence of common
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environmental effects is a measure of the broad sense herit-
ability of a genes expression level.

For the analysis of the CEPH family data, the pair variance
was replaced with an additive genetic variance (18,19) in order
to account for the family structure in the data. In this case, the
proportion of the variance explained by the additive genetic
effect [calculated as sA

2/(sA
2
þ sR

2
þ sE

2) where sA
2 is the addi-

tive genetic variance] is the narrow-sense heritability of the
gene expression level.

Analysis of the effect of sex on expression levels

The significance of the effect of sex on the expression level of
an individual gene probe set was tested using the same mixed
linear model framework as in the analysis of the effects of
genotype. An approximate t-test was constructed by dividing
the effect by its standard error. This is different from a stan-
dard t-test in that the variances in the model are estimated
by REML instead of the usual full maximum likelihood and
thus the degrees of freedom of the test statistic are in
general unknown. However, using the usual residual degrees
of freedom provides a close (though anti-conservative)
approximation with moderate data sizes. An improvement
can be made to the estimation of the test statistic for sex by
noting that the variance used in its construction will itself
have a large variance given the limited number of data
points used in its estimation. Thus, under the assumption of
a uniform variance across genes, combining the estimates
of the variance of the sex effect will increase the accuracy
of the estimated test statistic. This approach of combining
information across genes has been termed ‘shrinkage’ in the
literature (34). Given the transformation performed in data
normalization aimed to stabilize the data variance across
probes, the assumption of uniform variance seems reasonable.
Let the variance of the estimated sex effect on probe i be Xi.
The shrinkage estimator takes the form (35).

Si ¼
Yn
i¼1

ðXiÞ
1=G exp wðlnðXiÞ � lnðXiÞÞ

� �
:

with

w ¼ 1 �
2=n

varðlnðXiÞÞ

� �
þ

where (x)þ denotes max(0, x). Here, the various corrections for
biases that occur only with extremely small samples sizes have
been removed for simplicity. The weight, w falling between
zero and one, determines the relative influence of individual
and averaged variances. When w is zero, the shrinkage esti-
mate is the geometric mean and w of one returns the original
variance. In the MZ twin pairs, the shrinkage procedure
reduced the largest standard errors by 14% (equivalent to a
reduction of the variance of the effect size of 26%).
However, in the CEPH families, where the samples size is
much larger, the estimated standard errors are reduced at
most by 2%.
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