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Abstract

While genome-wide association studies (GWAS) have been successful in identifying a large number of variants associated
with disease, the challenge of locating the underlying causal loci remains. Sequencing of case and control DNA pools
provides an inexpensive method for assessing all variation in a genomic region surrounding a significant GWAS result.
However, individual variants need to be ranked in terms of the strength of their association to disease in order to prioritise
follow-up by individual genotyping. A simple method for testing for case-control association in sequence data from DNA
pools is presented that allows the partitioning of the variance in allele frequency estimates into components due to the
sampling of chromosomes from the pool during sequencing, sampling individuals from the population and unequal
contribution from individuals during pool construction. The utility of this method is demonstrated on a sequence from the
alcohol dehydrogenase (ADH) gene cluster on a case-control sample for heavy alcohol consumption.
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Introduction

A large number of genetic associations with disease have been

discovered in recent years [1]. However, it is likely that a large

portion of these are purely associations, with the underlying causal

variant(s) being in linkage disequilibrium with the associated

variant. In order to identify the causal variant(s), we require firstly

a complete catalogue of the genetic variation in the region, then

identification of those variants that are associated with the disease,

and finally functional studies to show which of these are causal.

While cost of sequencing individual samples is rapidly

decreasing, it remains – and likely will remain for the immediate

future – more cost efficient to identify all genetic variants through

sequencing of DNA pools, followed by individual genotyping of

the set of variants that are most associated with case/control

status. While sequencing DNA pools presents challenges in

accurately detecting rare variants with high sensitivity [2–4], this

is relatively unimportant when following up an observed

association with a common variant as it is unlikely that phenotypic

associations with common variants are driven by single or multiple

rare causal variants [5,6].

Testing for association in DNA sequence from pools of cases

and controls without correcting for the underlying sources of

variation will not only result in a large inflation of the distribution

of the test statistic relative to the null distribution [7], but also less

obviously may result in the incorrect ranking of SNPs for follow-

up. While methodology has been developed for case-control

association analysis from DNA sequencing of pools, the majority

have focused on the detection of association with rare variants

[8,9], while those for common variants provide complex and

computationally intensive models [10,11].

We describe a simple method that accounts for and readily

quantifies the relative contribution of both the observable and

non-observable sources of variation in the allele frequency

estimates from DNA pools. The utility of this method in

determining the relative impact of various aspects of study design

on the variance of the association test-statistic is demonstrated

using a case-control sample for heavy alcohol consumption and

sequence from the alcohol dehydrogenase (ADH) gene cluster.

Materials and Methods

We first describe a simple method for the analysis of case-

control pool sequencing results, and then provide an example of its

application.

Testing for Association with DNA Sequence Data on
Sample Pools

For each pool, i, let Ni be the sequencing read depth at a SNP,

ni be the number of non-reference alleles seen at that SNP and ci

be number of chromosomes in the pool (i.e. twice the number of

samples). Then the best estimate for the allele frequency of the

SNP in the pool is p̂pi~ni=Ni. Then a simple test for the difference

in allele frequency between two pools takes the form:
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Three approaches to estimating Var p̂pið Þ are investigated:

Variance #1: A naı̈ve approach that assumes that the allele

frequency estimate is equivalent to individual sequencing of the

samples in the pool. In this case:

Var p̂pð Þ~ p 1{pð Þ
c

Variance #2: Correcting for all directly observable sources of

variation in the allele frequency – the number of samples in the

pool and the read depth in the pool. It can be shown that when

accounting for these sources of variation, the variance of the allele

frequency estimate is (see Appendix S1):

Var p̂pð Þ~ p 1{pð Þ
N

z
p 1{pð Þ

c
z

p 1{pð Þ
Nc

This splits the variation into three components; the variation

caused by the random sampling of DNA molecules during the

sequencing process, the variation caused through the sampling of

individuals from the population in constructing the DNA pool and

an interaction term that accounts for the non-independence of

these two sampling processes. In practice the interaction term is

much smaller than the two other terms and can be excluded from

the calculation.

Variance #3: Correcting for both observable and non-

observable sources of variation. Even with careful quantitation,

there will be variation in the amount of DNA from each individual

in the sample pool. This unequal contribution of DNA to the pool

serves to inflate the portion of the variance in allele frequency

estimates due to the sampling from the population. It can be

shown that this inflation is constant with respect to allele

frequency, and that the variance of the allele frequency estimate is:

Var pð Þ~ p 1{pð Þ
N

z s2
az1

� � p 1{pð Þ
c

where ai is the relative contribution of individual i to the pool,

scale such that �aa~1 (Appendix S2). In an ideal setting, where the

DNA contributions of all individuals to the pool are equal, s2
a will

equal zero and this equation reduces to Variance #2.

In practice, the relative contributions of an individual to the

DNA pool is unknown. In order to estimate this variance from the

data, an approach akin to genomic correction [12] can be used.

Assuming the value of s2
a is equal for both the case and control

pools, an iterative approach is taken in which s2
a is adjusted until

the median test statistic has the value expected from the x2
1

distribution. Note that this approach differs from standard

genomic correction approaches, which multiply all test statistics

by a constant factor to give the median test statistic its expected

value, due to the presence of the variance term representing

variation in sequencing read depth. While a direct estimate of this

variance could be obtained through the completely independent

construction of multiple pools from the same set of individuals,

that is not considered here as it is inefficient and unlikely to be a

common approach.

For the large-sample distribution of the test statistic for the

difference in two proportions to apply, it is usually recommended

that the samples size multiplied by the minimum of p and 1{pð Þ is

greater than five. Due to the extra variance associated with

sequencing read depth and pool construction, this threshold should

be increased for the test statistic to satisfy its distributional

requirements. In practical applications with pools involving several

hundred people, filtering out all variants with less than 1% frequency

is sufficient. Removing these variants also does not affect the follow-

up of significant genetic associations results, as common variants are

most likely to be underlying the observed association [5,6].

Case-control Testing of High Alcohol Consumption and
the ADH Gene Cluster

As an example of the utility of this method, sequencing of a

pooled case-control sample for alcohol consumption was per-

formed. Consistent with previous work [13,14], the heaviness of

drinking measure for each individual was defined by a factor score

with four components: lifetime maximum drinks, three heaviest

period measures of frequency of heavy drinking, frequency of

drinking to intoxication and average weekly consumption. From a

population of 8,223 individuals in a family-based study, a sample

of unrelated individuals consisting of 369 cases and 357 controls

was selected, with cases defined as individuals having a factor score

above 1.700 (range: 1.700 to 4.830; representing 8% of the

population) and controls below 21.0135 (range: 21.0135 to

22.1267; the bottom 10.4%). Case and control pools were

constructed and sequenced by Macrogen, Inc. Ethics approval for

this study was provided by the Queensland Institute of Medical,

Research Human Research Ethics Committee. Written and

informed consent was provided by all study participants.

A 1 MB region on chromosome 4 (spanning from 99,653,607 to

100,610,500 – NCBI Build 36 / hg18) was sequenced, covering a

number of alcohol dehydrogenase genes that have previously been

implicated as being biologically relevant in phenotypic traits

involved in the consumption of alcohol, including alcohol

metabolism, subjective reactions to alcohol, excessive alcohol

intake or alcohol dependence [15–18]. Cases were sequenced to

an average read depth of 6311 (s.d. 2419) and controls 5744 (s.d.

2557) using an Illumina Genome Analyser IIx. Alignment of reads

was performed using the software BWA [19] and variants were

called using the pileup and varFilter options of the SAMtools [20].

A total of 1060 variants with a minor allele frequency greater than

1% in both cases and controls were called, consisting of 912 SNPs

and 148 indels.

Results

The QQ-plot for the -log10(p-values) for the case-control test of

heaviness of drinking is given in Figure 1. When calculating test

statistics using variance estimates #1 and #2, there is a clear

inflation of test-statistics as demonstrated by the genomic-inflation

factor [12] being larger than 1 (l = 3.55 and 2.94 respectively).

While the full correction using variance estimate #3 gives an

inflation factor of 1 (by definition), there is still some deviation from

the 95% confidence interval. This is not unexpected as the

confidence interval is calculated assuming independent SNPs,

which is clearly violated in data from DNA sequencing. Also, there

is prior evidence of association for alcohol related phenotypes in this

region that would indicate that some of this inflation may be caused

by genuine association.

The four most significant results are all from indels that fall

within a 60 KB region that spans ADH4 and its flanking regions.

While individual genotype data is not available for this sample

Association Testing from Sequencing of DNA Pools
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(and not all these variants are in the 1000 Genomes release from

March 2012 [21], we can see that these variants are likely to be in

strong LD using SNP data for this region from the CEU samples

in the HapMap project [22]. Indeed, five of the next ten most

significant variants are found in this region, presumably because of

LD.

For the heavy alcohol consumption case-control pools, the value

of 1zs2
a

� �
in variance estimate #3 is estimated to be 3.34. Using

an average read-depth of 6000 and pool size of 320 individuals,

this corresponds to the variation in sample contribution during

pool construction being approximately 67% of the total variance

in the allele frequency difference. This emphasises the importance

of accurate pool construction for DNA sequencing case-control

studies.

Discussion

DNA pooling provides a cost effective mechanism for assessing

common variation within a region in which a genetic association

has been observed with the overall aim of identifying the causal

variant(s). We have described a method for case-control associa-

tion testing with data from DNA sequencing pools and have

demonstrated its application to a cohort assessed for heaviness of

alcohol consumption.

One important consequence of correcting for variation in the

test-statistic caused by sequencing read-depth and pool construc-

tion is a potential change in the relative ordering of the largest test-

statistics compared to a naı̈ve comparison of allele frequency

differences. This results in change to the priority of which variants

should be followed up by individual genotyping. From the

example dataset used here, only six of the ten most significant

variants when using variance #3 are also in the list of top ten most

significant variants when using variance estimate #1. In partic-

ular, two of the top ten variants when using variance estimate #1

are not in the list of the top 10% most significant variants when

using variance #3, effectively demonstrating their initial associa-

tion was a false positive.

Another point of interest is the relative contribution of variation

introduced during the pool construction. In the example dataset

used here, the pool construction accounted for the majority of

variance in the test-statistic at all allele frequencies, with

approximately 67% of the variation in allele frequency difference

between the pools at the average read depth attributed to pooling

variation. It is likely that this variance can be reduced though

stringent quantitation during the construction of the equimolar

DNA pools. This result is in contrast to DNA pooling on

genotyping arrays where the variance introduced through DNA

pool construction is small compared to that introduced from

measuring the allele frequencies on the array [23]. This can be

seen directly by noting that in the DNA sequencing of pools, the

equivalent term to the array measurement variation is the

variation from sampling DNA molecules during the sequencing

process. Given any reasonable sequencing read-depth, this source

of variation is likely to be the smallest component of the allele

frequency variance.

While it remains to be seen how much the DNA pool

construction variance can be reduced, its relatively large

contribution to the variance indicates that approaches such as

pooling of blood [24], where equal volumes will contain different

amounts of DNA, may not be appropriate for sequencing studies.

This can be seen by noting that the variance in allele frequency

due to pool construction will be inflated by a further 1zs2
b

� �
,

where s2
b is the variance in the contribution to the DNA pool due

to sampling from blood (when contributions are scaled to have an

average of one), a typical value of which is around 0.25 [25]. In the

example dataset used in this study, this would increase the

contribution of pooling variation from 67% of the variance in

allele frequencies to 73%. While this difference is not particularly

large, the relative effect of the use of blood for pooling increases as

the volume contributed by each individual becomes more even,

meaning that any gains from accurate pipetting during pool

construction will effectively be lost when pooling from blood.

The impact of sequencing error has not been included in the

developed test-statistic. However, the effect of sequencing error is

highest when investigating rare variants and the test-statistic

provided here is only appropriate for common variants. Also, for

an individual common variant, sequencing error using current

technology is very low and will be orders of magnitude lower than

the variance caused by finite read-depth, which is likely to be the

smallest component of variance in the test-statistic for most studies.

Not accounting for sequencing error variance will inflate the

estimated variance due to unequal contributions of DNA to the

pool to a very minor extent.

While the association test-statistic here only addresses the case

of a single pool for the case and control sample, it does inform on

the optimal approach for the use of more than one pool. Given the

majority of the variation in the test-statistic is attributable to

unequal contribution of DNA to the pool, it would be of most

advantage to sequence independently generated DNA pools from

the same individuals. However, accurate pool generation does

require extensive investment in laboratory time and thus

represents a trade-off given the use of DNA pools is primarily a

cost reduction exercise.

The utility of using DNA sequencing on case-control pools was

demonstrated using a sample selected on the basis of being at the

extremes of a measure of heaviness of alcohol consumption. The

most significant variants from the case-control analysis fall within a

60 KB region spanning the ADH4 gene. From publicly available

individual level genotyping data for this region, it is likely that

Figure 1. QQ-plot of -log10(p-value) from the test statistics
using the three different estimates of the variance of the allele
frequency in the sample pool: accounting for sample size in
the pool (solid – variance #1), accounting for samples size and
read depth (dashed – variance #2) and additionally account-
ing for variation in amounts of DNA in pool construction
(dotted – variance #3). The 95% confidence interval for the
expected distribution with no association and independent variants is
shaded. The p-values for the four most significant variants are indicated
with crosses.
doi:10.1371/journal.pone.0065410.g001
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these variants are in high LD and therefore the associations will

not be independent. While confirmation of significant association

will require further follow-up with individual level genotyping and

replication in an independent cohort, there have been a number of

prior studies that have implicated this gene in susceptibility to

alcohol dependence [16,26–30]. Work is ongoing to validate these

variants and their association in this sample using individual

genotyping before performing the required replication that is

needed in association studies.

One potential disadvantage of sequencing of DNA pools is the

inability to remove individuals from the dataset retrospectively in

order to control for potential population stratification. Even the

individual sequencing of a particular genomic region is unlikely to

provide enough information to adequately control for stratification.

In the case of the test-statistic using variance #3, some of the effect of

population stratification will be captured through the inflation of the

estimated effect of the unequal contribution of individuals to the

DNA pool. Not only does this reduce the power of the test, it

potentially increases the rate of false positive results. Thus, care

needs to be taken when selecting individuals for inclusion in the

DNA pool. The issue of population stratification is readily avoided

when using sequencing of DNA pools as a follow-up of a significant

genome-wide association result, as the original SNP data from the

GWAS provides information on population stratification in the

sample.

In conclusion, we show that case-control pool sequencing can

allow economical identification of poorly-tagged SNPs or other

polymorphisms within a region identified by GWAS or because of

its biological plausibility, and provide an example from our work

on alcohol use and dependence.
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